
5-A151 892 BACKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR L/3
RELAlTIONAL DATABASE COMPUTER SYSTEM(U) AIR FORCE INST
OF TECH WRIGHT-PATTERSON AFI OH SCHOOL OF ENGI.

UNCRSIFID MPONTIFF DEC 84 AFXT/GCS/ENG/84D-22 F/O 9/2 L

ommhhhhmhhml
mhhhommhhhhhm

i-2 8

-- U0.

11111= Q. 2

111.8IIII-

1111111..6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

. *. . •. . o. ° - . o . % . , o ° o . o o o , . o° o .o ..

.. •....' *. . ." .' "-.I

N

00
I--

I- .

I

BACKEND CONTROL PROCESSOR
FOR A MULTI-PROCESSOR

RELATIONAL DATABASE COMPUTER SYSTEM

THESIS

Dale M. Pontiff
Captain, UJSAF---"

AFIT/GCS/ENG/84D-22
0_

LIME~T! documext hcm beam a~

diallbugcm is OWLn"L AR .

. DEPARTMENT OF THE AIR FORCE ' 7"

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

03 13 069

C. AFIT/GCS/ENG/84D-22

BACKEND CONTROL PROCESSOR
FOR A MULTI-PROCE~SSOR

RELATIONAL DATABASE COMPUTER SYSTEM

THESI S

Dale M. Pontiff
Captain, USAF

A FIT/GC CS /EN G/84 D-22

Approved for public release; distribution unlimited

.o, -*.----.--s -O 'o

AFIT/ GCS/tNG/84D- 22

K"" BACKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR

RELATIONAL DATABASE COMPUTER SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of
Acession For

Master of Computer Information

' p

i"-. ! "°'~~~ - I t" f ' .t o --.- "
2 'Ati° .'"______

Dale M. Pontiff

Captain, USAF ,

December 1984

Approved for public release; distribution unlimited

,'.-" ..-- .

Preface

In 1981, Robert Fonden began the design and development

of a Backend Multi-Processor Relational Database Computer

System. This thesis addresses a single component of this

system, the Backend Control Processor (BCP). The BCP is

responsible for managing the actions of the entire backend

system, It must provide direction for many slave micro-

processors, and control the system paging algorithms. This

paper covers, in detail, the design of the BCP for Robert

Fonden's Backend architecture.

I would like to give special thanks to my thesis advisor

Dr. Thomas C. Hartrum for his guidance, patience, and encour-

agement during the development of this thesis. Each time the

effort grinded to a halt, he provided the necessary boost to

set my mind in motion once again. Thanks are also due to Dr.

Henry Potoczny for his assistance, especially in Chapter 4,

and to the lab technicians, Dan Zambon, Charlie Powers, and

Capt. Lee Baker for their prompt, courteous responses to all

of my questions and problems.

Finally, I wish to thank my wife, Beth, for all her

help, support, and encouragement during my graduate studies.

/ ... o" -

.7-:

Contents

Page

Preface

List of Figures v

Abstract vii

I. Introduction

Background 1
Statement of Problem5
Scope 5
Current Knowledge 6
Approach 6
Overview of the Thesis 7
Material and Equipment 8

II. Research Phase 9

Introduction 9
Ohio State University;s Database Efforts . . 9
DIRECT 11

Summary 12

III. Functional Requirement Analysis of the
Backend Control Processor 13

Introduction 13
Addition of Frontend 13
Functional Breakdown of a DBMS 15
Frontend's Responsibilities 16
Backend Control Processor's Responsibilities . 17
Query Processor's Responsibilities 18
Mass Store Unit's Responsibilities 18
Memory Buffer Unit's Responsibilities . . . 18
Location and Accessibility of the

Database Data Dictionary 19
Handling Update Type Queries 20
Modification of Rogers' Query Processor

Analysis 21
Replace Average 22
Replace Compress 22
Modify Insert . 0 23
Add Intersect 24
Modify Min/Max24 ..'.-.2
Modify Value Returing Operations 24

Summary of Query Step Operations 25
Unary Input Relations 26

%4

Binary Input Relations 26
Summary of BCP Commands 27

IV Paging Theory 29

Introduction 0 29
S elect 30

Modify 31

Maxn 33
Sumjec 33
Sort 33
Proa c 33
Joinm 34
Inrtrsec 35
Prdu ct 35
Union 36
Inserst 36

V ocl dwaeardRstitin 37

Intoduction 37
Deen ee t Harwar 37

Initial Configuration 37
Drawbacks 39
Alternative Configuration 40

VI Data Structures 42

Introduction 42
Task Trees * * * * * * * * * * * . 42

Relation Database Files; 44
File List 44
Query Node 45
Query Branch 46
Task Tree 47

Message Queue 50
FE Structures 51

Query Step 52
Query Step -Hedr 52
Query Step -- Selection Criterion .53

Query Step -- Modification List . 55
Query Step -- Attribute List ... 56

Query Header 56
QP Structures57

-' ~QP Paging Information 57
QP Status 58
Query Processor 59

MSU Structures 59

MSU Paging Information 59
MSU Command Message . . . 0 0 60

System Status* 60
Buffers*** 61
Test Files **61

System Status (Structure) ... 61

VII Detailed Design 63

Introduction 63
QP Assignment *64

Overview of System*Paging 67
Output File Control 68
Paging Algorithms 69

rGeneral Paging Algorithm 69
ASort Paging Algorithm 0 71

Merge Paging Algorithm 73
Sorted Merge 73
Unsorted Merge 75

Buffer Allocation Scheme 75
Node Splitting77

Node Splitting Algorithm 78
Node Splitting Example 82

File Locking Scheme 83
Error Handling 85

VIII Conclusion and Recommendations 86

Overview 86
Suggested Advancements 86
Parting Comment 87

Appendix A: Glossary 89

Appendix B: Single Processor DBMS (SADT) 91

*Appendix C: Multi-Processor Backend DBMS (SADT) . . . 98
Data Element Data Dictionary 127
Activity Box Data Dictionary 174

Appendix D: Sample Query in the Frontend 203

Appendix E: Summary Paper208

Bibliography 217

Volume II: Structure Charts and Program Listing
(Available from AFIT/EN)

iv

List of Figures

Figure Page

1. Fonden's Original Physical Design Approach . . 4

2. Modified Physical Design of Backend System . . 14

3. Initial Developement System Configuration . . 37

4. Alternative Developement Configuration . . . 40

5. Overview of Tasktree Structure 42

6. Query Tree (Branch) 45

7. Highlevel View of Tasktree 47

8. FE Query Message 50

9. QP Assignment Algorithm 65 -

10. General Paging Algorithm 69

11. Soort Operation Paging Algorithm 71

j %J 12. Union/Insert Operations Paging Algorithm . . 73

13. Node Splitting Algorithm 77

14. Find Largest Query Step Segment 78

15. Split Node in Half Algorithm 80

B-i. Single Processor DBMS 93

B-2. Provide Relational DBMS 95

B-3. Process DBMS Input 97

C-i. Multi-Processor Backend Relational DBMS . . . 100

C-2. Provide Relational DBMS Support 102

C-3. Initialize Database System 104

C-4. Provide DBMS Functions 106

C-5. Provide Frontend DBMS Functions 108

P C-6. Execute FE DBMS Functions 110

V

..

C-7. Execute Preliminary DBMS Functions 112

C-8. Provide BCP Functions114

C-9. Execute BCP DBMS Functions 116

C-10. Add to Task Tree 118

IC-11. Manage QP Assignment/Release 120

C-12. Manage Active Query Steps 122

C-13. Update Task Tree 124

C-14. Shutdown System 126

D-1. Optimized Query Tree 205

E-1. Physical Design of Backend System . . 209

mE-2. Optimized Query Tree o o o o 210

E-3. Query Tree (Branch) 215

vi.

S

Abstract

This paper discusses the design and developement of a p
control processor for a multi-processor relational database

machine. The objective was to create the software needed to

allow a micro-processor to receive rel3tional query trees

from a frontend processor, and to distribute the work load

between several other slave processors.

The requirement analysis of the controller determined

that the controller must provide three major functions within

the backend database machine. It must assign slave proces-

sors to query operations, control the system paging, and

manage file creation and deletion. Next, the thesis proves

that each query operation can sucessfully be split across

several slave processors and the results be recombined to

provide the same response as a query executed on a single

processor. Finally, the thesis gives a detailed description

of the software algorithms use by the BCP to manage the p

backend system.

-vii. .

BACKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR

RELATIONAL DATABASE COMPUTER SYSTEM

I Introduction

Background

In recent years, there has been a growing requirement

for "easy-to-use" databases. This growth is caused by an

increase in the number of people without computer programming

background relying on computers to organize information for

their jobs. Because of the "easy-to-use" requirement, rela-

tional databases have been growing in number and popularity.

Relational databases are based on solid mathematical

p rinciples, using relational algebra, yet their use is intui-

tive. At the user level, relational databases provide a

tableau view of the data. This view makes it eicier to train . "

people in the use of the database.

While relational databases solve the "easy-to-use" cri-

terion, there is still the problem of handling the substan-

tially increasing amounts of information processing. One of

the major drawbacks of relational databases is that they tend

to be slower than other database models when dealing with

large databases. As the database grows in size and complex-

ity, the computer resources will become saturated, and system

degradation will begin.

There are currently many research efforts underway to

1""=

* . . ** * * ~ - ~ *

improve computer databases. Within AFIT alone, there is work

being done on several theses concerning four major areas of

database development. This interest in databases at AFIT is

largely directed by Dr. Thomas Hartrum. These four areas of

research include (7):

* intelligent software (reduce paging)
* specialized architecture (provide parallel

processing)
* distributive DBMS (allow several DBMSs on many systems

to act as one)
* user interfaces (provide user-friendly tools and

interfaces to simplify complexity of the system)

As knowledge is gained in each of these areas, it is possible

to combine two or more of the features to provide an extreme-

ly powerful DBMS.

This thesis deals with providing a specialized computer

architecture to allow parallel processing on a given query.

This project began with Robert Fonden's design of a multi-

processor DBMS in 1981 (6). Further design work on the

system was done by William Rogers in 1982 (12).

The Fonden architecture makes use of a multiple instruc-

tion multiple data stream (MIMD) backend database architec-

ture to improve system throughput. A MIMD system allows a

high degree of parallel processing to be achieved by separate

functional units that perform operations simultaneously. To

do this, the data has to be distributed among the multiple

functional units.

With the introduction of inexpensive microsystems, it

has become feasible to use a number of secondary computers as

2

. .* % . - o ° . o,. .- ,-.. . .. * * ~ * ' .-. . o . .°o , . 4 .

a multifunctional backend system. By placing the database on

a backend, the host system is relieved of many of the time I

consuming phases of database processing. This approach adds

more 'computing power to the existing host system without a

major upgrading to a newer, more powerful machine. I

With a multi-processor backend, one can take advantage

of the three types of parallelism inherent in relational

database queries to improve service time. The three types of

parallelism are:

independent parallelism
node splitting

* pipelining

Independent parallelism is simultaneously processing two

(or more) parts of a query which will be joined at a later

I, stage in the query. I

Node splitting is having several processors simultan-

eously act on different pages in the same query step.

Pipelining is having the output of a process(es) being - -

immediately fed into a second processor(s) to complete the

next step of the query.

Fonden's thesis has described a computer architecture in

which a backend system with many small processors can be used

to enhance the performance of a relational database system

(6: 68-91). This architecture uses a master/slave relation-

ship in which a Backend Control Processor (BCP) controls the

action of many Query Processors (QPs). His system consists

3

L

~~~~~~~~~~~~~~~~~~~~~~~~~~~~..-... ..- . . ...'..,..... -............... -.. .'...'... ... ...... ... ... ..... ... .... .. ** .-. .. ~ -%. ¢' ... %,.."



of (See Figure 1):

* * a mass storage device
* a BCP
* eight QPs
* six Internal Memory Modules (IMM) per QP

Host

JData
Bas BCP --

QPI QPn

MM MM MM .. MM

Figure 1. Fonden's Original Physical Design Approach
Source: (6: 75).

4

I 1 "

* f° ..'



S- •7

This architecture makes use of both the backend system and

the inherent parallelism of relational queries to speed up

the retrieval/update time of the database.

As development progressed, a slight modification was

made to Fonden's architecture. A frontend processor has been -

added to the system. The frontend processor could be con-

nected to a local network, a host system, or several user

terminals. This will hopefully improve the system's modular-

ity, flexibility and performance capacity. The frontend

would be responsible for query optimization, transaction log,

and security checks of the database.

Statement of the Problem

The purpose of this thesis is to provide a working model

of the Backend Control Processor (BCP) for Fonden's Backend

Database Computer System. At the initial stages of develop-

ment, emphasis is placed on ease of understanding, portabil-

ity, and maintainance rather than on speed and efficiency.

- The reason for this is because this is an on-going thesis

project and other students will have to pick up the system at

a later date. It is hoped that the multiprocessors alone

will give the increased performance desired, and code opti-

- mization may occur at a later time.

* Scope

Upon the completion of this project, the BCP should be

able to:

5



. receive a query message from the frontend
* allocate the necessary QPs to a query
* communicate with each QP by passing "query steps" and

other necessary information
* receive communication from the QPs upon the completion

of a page or "query step"
page relations into and out of each QP's IMMs

* maintain bookkeeping information about the DB
* transmit a response back to the frontend

Due to the time constraints, the following areas will

not be addressed in this thesis:

optimization of queries
optimization of selecting types of parallel processing

* selecting the optimum number of QPs for a query
* transaction log
* security
* backup

NOTE: Whereever possible, hookups for the above items will

be included in the design of the BCP.

Current Knowledge

Fonden has completed a feasibility study on the overall

project (6: 67) and provided long term requirements and goals

(6: 68-73). Rogers has completed the analysis and high-level

design of the Query Processors (12).

Approach

The project began with preliminary study on two develop-

ing backend database architectures. This was to aid in an

overall understanding of the project, and hopefully point out

*. some pitfalls to avoid. Next, a thorough analysis of the BCP

. was performed with the use of Structure Analysis and Design

- Technique (SADT) (11: 62-69). Following the analysis, the

system was implemented in a modular style using the 'C'

6



language on the S-100 multi-processor system. The final step

was to test the system to determine what problems still 0

exist.

Overview of the Thesis

This thesis is divided into 8 chapters.

Chapter 1 is an introduction to the thesis. It gives a

brief background discussion of the backend system, and de-

fines the purpose of the thesis.

Chapter 2 discusses the preliminary study phase of the

thesis and insights gained by the author through the review

of existing backend database architectures.

Chapter 3 discusses particular problems encountered

during the BCP requirements analysis, followed by an overall
S

view of the requirements of each component of the backend

system. Finally, it gives a brief summary of the different 2
query step operations and BCP commands.

Chapter 4 discusses paging theory related to the backend --

system, and provides proofs that the query steps may be

correctly split across several different query processors,

Chapter 5 discusses the local hardware configuration for

the initial versions of the backend system.

Chapter 6 discusses the data structures used throughout

the BCP software.

Chapter 7 discusses the algorithms for assigning query

processors to a query step, and providing system paging.

7 Siiiii!



I

Chapter 8 provides a summary of the thesis, and suggest-

ed areas where the BCP and backend system can be improved.

Material and Equipment

Implementation and testing for this project was done on

the S-lO0 system available in the computer lab. This system

consists of a Super-Quad board by the Advanced Digital Corpo-

ration (1: 1) with 64K memory, and dual 8 inch disk drives.

The operating system was CP/M version 2.2. All code was

written in BDS C (15).

ILI

8-..

. . .. . . . .



II Preliminary Study

Introduction

The preliminary study concentrated mainly on two other

multi-processor database systems. The first one is being

developed at the Ohio State University (OSU) under a contract

with the Office of Naval Research. The second database

system (DIRECT) is operational at the University of Wiscon-

sin, but still being enhanced.

The purpose of the preliminary study was to gain some

knowledge of other database machines with specialized archi-

tecture. This could possibly give some insight into the

design and configuration of related existing systems. The

study achieved its goal by bringing to the surface several

" problems (and solutions) which were not previously

considered.

Ohio State University's Database Efforts

The OSU database employs many micro-processors, each

with its own disk drive. The data is evenly distributed

across each processor, and the query is simultaneously broad-

cast to all processors. The results are then returned to the

controller.

The OSU technical report (8) gives a detailed report on

the design considerations important to their backend database

system. Not only does it discuss the development of their

. . % ..- *. ,



own Multi-Backend Database System, but it also includes an

excellent summary of the advantages and weaknesses of several

other backend systems. These are:

* RDBM - a relational DB system

* DIRECT - a multiple backend relational system
* Stonebraker's Machine - a "distributed" DB system
* DBMAC - an Italian DB system

The report discusses several key database problems which

the author had not initially considered. The placement and

accessiblity problem of the system data dictionary became

apparent (See Chapter 3) during this review. The report also

caused a more concrete consideration of the degree of concur-

rency and the locking mechanisms of the Backend System.

One of the interesting features of the OSU System is

that it is being developed to allow linear performance growth

e proportional to the number of backends employed. This dif-

fers from most systems, where the performance of each proces-

sor decreases with the addition of each new processor until

the additional overhead/cost out weights the performance

gains.

The notion of linear performance growth is interesting,

and several days were spent trying to incorporate this fea-

ture into Fonden's Backend System. It was soon discovered

that this was beyond the capability of the system because to

achieve this goal would require the removal of any decision

making algorithms from the controller, and a way had to be

found to eliminate I/O contention between the processors.

Because Fonden's architecture does not have a linear

10

. . . . . . . . . . -. .



performance growth with the addition of each QP, it is con-

ceivable that the backend system could become saturated.

Upon realizing that the Fonden system had an upper bound,

while OSU's system could grow (theoretically) forever, the

author considered abandoning the thesis because it would

soon be obsolete.

In the real-world, Fonden's system should be able to

handle a reasonably large number of QPs before becoming S

saturated, and is capable of surviving the loss of a QP,

whereas on the OSU system the loss of a QP also means the

loss of part of the database. Thus, any output relations 0

created on a partial system would possibly be incorrect. So,

while Fonden's architecture has an upper bound on its growth,

ridit is less vulnerable to hardware failure and does indeed P

have a future in database management.

DIRECT

The second system studied was the DIRECT (3) (5) system

of the University of Wisconsin. This was choosen because it

is very similar in design to Fonden's system. Both systems

use a Controller Processor to supervise many micro-processors

that share a commom memory unit. The major difference bet-

ween the systems is the location of the database files. In

Fonden's design, the backend system has its own dedicated

storage device (accessable only by the backend). In the -

DIRECT architecture, it appears as if the database files are

11 -

I .



stored on the host system's disk drives, thus the host system

must perform the actual paging of data into and out of the

backend memory unit.

The Controller in the DIRECT system performs the follow-

ing major functions:

" creation/deletion of relations
" packet (task) assignments to slave processors

memory management

These are essentially the same major functions provided by

the BCP in Fonden's System.

The review of the DIRECT system did not turn up any

additional problems not already discovered, but did mention

some of the same problems. It also mentioned that the hand-

ling of interprocess messages was one of the most complex

j ~areas within their system.

Summary

The reveiw of other systems stressed the importance of

hardware restrictions, but neither dicussed detailed methods

for recombining the output of several processors into a

single result relation. The preliminary study made the auth-

or aware that data paging and bus contention would be major

problems to any :urther design, and that special attention

should be given in these areas.

12
. -1.

.... .... .... *-****.~~i*.-*.**~* **** *.*'.f* .... -....... 1



I

III Functional Requirements Analysis

of the Backend Control Processor

Introduction

This chapter will discuss specific problems encountered

while performing the functional requirement analysis of the

BCP. Briefly, it covers:

" the addition of a frontend to the Fonden architecture
" the functional breakdown of a conventional DBMS
" the major responsibilities of each major component in

the backend relational database computer system
" the location and accessability of the Data Dictionary

handling of update type queries
modification made to Roger's Query Processor analysis

* summary of query step operations

Appendex C contains the Structure Analysis and Design Tech-

nique (SADT) and the Data Dictionary developed during this

study.

Addition of Frontend

Upon beginning the functional requirement analysis for

the Backend Control Processor (BCP), several major problems

began to arise. One of the foremost was the fact that
S

Fonden's architecture required a very tight coupling with the

host system. He assumed that the host would be passing down

an optimized query tree to the backend database system.

There are several problems with this structure. First

is the fact that it defeats one of the reasons for using a

backend computer; that is modularity, the ability to easily
P

replace the host system and still have an intact DBMS. Any

13

....

-7.



new system would require programming to enable it to pass a

complex tree structure rather than a simple query message.

The second major problem is the location of the database

data dictionary. The data dictionary should be placed with

the database, but the host system needs access to it to be

able to optimize the query. This means that the host system

must be able to access the backend's mass storage device, or

the backend must download the entire data dictionary to the

host system. Both options have undesirable side effects.

In an attempt to isolate the backend system from the

p
host system as much as possible, a frontend processor was

added to the architecture, Its initial function was the

optimization of queries, but as the functional requirements

IL of the system were studied, other functions were assigned to

the frontend.

In the modified architecture (See Figure 2), the-"

Frontend (FE) is connected to the host system. Incoming

queries and commands are validated (and optimized) by the FE.

The FE must access the database data dictionary to be able to

perform these functions, so it is directly linked to the Mass

Storage Unit (MSU). The numerous IMMs of Fonden's

architecture are replaced by the Memory Buffer Unit (MBU),

but it still serves the same basic function; provide a fast

scratch pad for the QPs. The BCP does not need to directly

access data on the MSU, but it must be able to control the

system paging and file creation/deletion process.

14

, : . . . . . . . .
-,.. . 9. .-. .... ... .. . • . ** .. ..- .... ... .. --...-./ .. g-...-.. *'.-'/ ..,,..-..- -..:. ,.. ...-.. ,. - -.... .:..- - - . ...- ...- - . : ..-.



Host,
Network,
or CRT

Frontend Strg

Backend Memory s
Control Buffer
Processor Unit-

Quer , IQuer . .'' .~ °

-i- Figure 2. Modified Physical Design of Backend System." "

Functional Breakdown of a DBMS

With the addition of the frontend (FE), it became neces-

sary to reevaluate the entire functional relation of each

component in the modified backend system. Several unsuccess-

ful attempts were made to determine the operations of each

component, and it became apparent that a new mode of attack

was needed to help solve this problem.

It was decided that a functional breakdown of a conven-

*. . . . .-... . .. . .. . .. ....-. . . . . . . . . . .



tional single processor DBMS would reveal the logical modules

of the system (See Appendix B). This breakdown was completed I

only at the highest level to serve as a guide to enable a

modular breakdown on the multi-processor system. The major

functions of a DBMS are:

get query
analyze syntax
verify access - -

log transaction
optimize query
execute query
manage Data Dictionary
send answer

After succussfully breaking the DBMS into its functional

units, it is a simple matter to map the functional operations

into the hardware components of the Backend Relation Database

Computer System. p

On a large database, the "execute query" step is the

time consuming process, and it is this step that the multi-

processor architecture is aimed at reducing. p

Frontend's Responsibilities

The FE's primary job is to optimize the query. To do

this, it must first receive the query and analyze the syntax.

Since it is wise to catch errors at the earliest opportunity,

access verification should be done prior to optimization. It

1
also seems prudent to log the transaction in its original

form (rather than as a complex query tree). Given these

guidelines, it is reasonable to place all of these DBMS .
p

functional operations on the FE. Because the FE must communi-

16

~~ .

, .. ... -, ., ... .... ...- -. - - . . . . - .. .- . . .... . -. -. . .. . . .. .> . .- .. ... ... . .. .. . ...- - . ..



cate with the host system to receive the query, it is logical

to have the FE send the results back to the host. Last, the 0

FE is the only processor that requires access to the Data

Dictionary. Therefore, it must also manage the Database Data

Dictionary. Given these requirements, the FE must:

" communicate with the outside world (receive query and

send replies)
" communicate with the BCP (pass down optimized queries

and receive responses)
" communicate with the Mass Storage Unit (MSU)

(read/write file; delete files)
analyze syntax of a query
verify access rights of a query
log transactions
optimize the query
manage the DB Data Dictionary

In fact, the FE has become a single processor DBMS except for

the "execute query" function.

Backend Control Processor's Responsibility

The BCP's primary job is to provide control of many QPs.

This is largely unchanged from Fonden's original proposal (6: "

109-113), except that the BCP can dispense with query valida-

tion, and now the BCP talks to the FE instead of the host

system. In light of the modified architecture, the BCP must:

* communicate with the FE (receive queries and send

responses)
* control the MSU (tell it what and where to read/write

into the MBU; create and delete files)
* control the QPs (tell them what step to perform; where

to read/write data in the MBU)
* manage QP allocation

manage system paging
manage creation/deletion of temporary relations
provide job control

17



. . . .7

. . . . . . . . . . . . . .

Query Processor's Responsibilities

The QP's primary job is to provide relational operations

on a page of a relation. This is unchanged from Fonden's

proposal, although minor modifications were made to Rogers'

analysis. The QPs are not interested in where the data comes

from or where the output goes. They simply perform a specif-

ic relational operation on a specific page in the MBU, and

store the results in another page within the MBU. The QPs p

must be able to:

* read/write into the MBU
* communicate with the BCP (receive query steps and

paging information)
* perform the necessary relational operations

Mass Store Unit's Responsibilities

IL The MSU's primary job is to provide permanent storage

for the database, and provide a file control mechanism (ie.

the ability to create, delete, and append to a file). It

must be able to:

* read/write into the MBU
* communicate with the FE (receive/send files and DD)
* communicate with the BCP (receive directions about
where to read/write in the MBU; receive command on
creation or deletion of files)

* provide file control commands (create/delete/append)
* provide a permanent storage media

Memory Buffer Unit's Responsibilities "

The MBU's primary job is to provide a fast buffer stor-

age for the QPs. Ideally, any QP could access any page in

the MBU allowing pipelined operation and shared pages. The

MBU is what Fonden described as the IMMs in his proposal, but

18

,.- °,- 
-
. . . -. . -. , % -. ° - -. ,• % . - ,-= - , •,. =, -....- .*.... . .. .... . . . .-.... . . . . . . . . . .,. .-........ ' .'.-.•.,



the paging buffers should be thought of as a single component

rather than as many small separate units, thus the change in

names. It must:

* allow the MSU to read/write to any buffer page-
* allow the QP to read/write to any buffer page
* provide approximately 8 pages (or more) of buffering

per QP

Location and Accessibility of the Database Data Dictionary (DD)

One of the major concerns of splitting the database

manager across multiple processors was where to locate the

Data Dictionary for the database. After much discussion and
I

study, it was decided that by including certain critical data

in each query step, only the FE processor would require

access to the DD. Hence the DD is placed on the FE, where

L the most critical need exists.

There are obvious advantages in having only one of the

processors accessing the DD. These include not having to

provide a locking scheme on the DD, reducing processor commu-

nications (to access the DD), reducing storage requirements

on the other processors, and eliminating the need to propa-

gate changes in the DD to multiple processors. The draw-

backs are requiring the FE to do more bookkeeping during the

query tree build, and increasing the size of the query steps

being passed between processors.

Since the FE has already insured that domain boundaries

are not crossed (e.g. compare 'city' with 'num of workers'),

and that illegal actions on an attribute are not performed

19

. , - -. -.. . • -. . -° o. % % .. % ." ° % % .. . • •. % ° .- o -.° .= ° . °. -. . . ° -.- -'% -, . .- ,- ° . ..' °- I °

55.:'5": : "-'- --"',"-" ."-"'-'-'.............................................................................".."..,..".."..".'.-.-.



= . .

(e.g. sum a character field), the BCP and QPs are not re-

quired to make these checks and do not need most of the

information stored in the DD. The BCP simply needs the name

of all DB files to be accessed in the query (which it would

require regardless of the DD location), and the size (in

pages) of each file. This is because the BCP's function is

largely to provide paging control of the files, which does

not require knowledge about the contents of the file. The

QPs need the starting address and length of each attribute

field accessed (12: 39-69) (if working on fixed records), or

just the attribute field number (if working on varying re-

cords). This is because the QPs simply need to know where to

stop and start in comparison/modifications of a field, and

are not concerned with the contents of data in a field.

"--i As mentioned above, this requires additional bookkeeping

by the FE while building the query tree, and is implementa-

tion-dependent (a detailed account is given in Appendix D).

Handling Update Type Queries

On the first attempt at the functional analysis of the

BCP, file updates and file retrievals were separated into two

different functional areas. The reason for this was because

Roth's Query Optimizer was designed with retrievals in mind,

. but provides little directions for updates. On subsequent

reviews in this area, the discussion of whether retrievals

and updates should be treated as a single function or as two

20



separate functions was questioned. It was decided that the

decision should be based on functional requirements and not
I

on existing tools (although during implementation the reverse

may be true). Further study determined that the paging

requirements were basically the same and there were no major

differences between the two types of operations from the BCP

view.

This means that Roth's Query Optimizer (13: 51-78) must ...

be modified to handle updates as well as retrieval requests,

or that updates must be performed in the form they are en-

tered. Because an update request may only modify a single

relation, it will generally consist of only a single node and

will not require optimization. Therefore, there should be no

Lproblem in placing the update requests into a tree form.

Modification to Rogers' Query Processor Analysis

While developing the paging algorithms for the BCP to

handle the different relational operations, it became appar-

ent that changes would be necessary in the design of the QPs.

* Rogers discussed the relational operations he believed were

essential on the QPs for the Backend System to operate (12:

36-40). The following changes are needed to the QP to pro-

vide the support the BCP requires:

* "average" is replaced by a "sum" operation

* compress" is replaced by "sort" and "union"
operations

* modify "insert" with a union type operation which
reports dupilicate keys

* "intersect" is added

,.,
,.. 21.,

m ., .. . .. ° o° , .° , . ,.-i-,:. - .- °•.I ,..
•

.. ° - .*, . . .. .. .,,. •., ,.. - . -.. . - .. .-. *. .- .- ..-. . - - . -•



* * .* - - - - * .".- .- "* *

modify "min/max" operation to return a value, not a
tuple

* modify value-returning operations to provide the

answer in the response message, not as an output
relation

A brief justification for these changes is given below, with

detailed paging requirements discussed in a following chap-

ter.

Replace Average.

The reason for eliminating the "average" operation from

the QP operations is because the "average" requires the QP to

maintain information across the entire relation, not just a

single page at a time. It is impossible for the QP to take 0

the average of each individual page and produce an overall

average for the relation. This means that either the "aver-

age operation must be removed from the Data Manipulation

Language (DML) or an alternative method must be found to

provide it. Two workable alternatives are discussed:

* a weighted average
a sum operation divided by the count

In the final product, a weighted average should be implement-

ed, but for the current system, a "sum" operation shall be S

added to the QP. The BCP will have to compute the average by-

dividing the sum by the tuple count.

Replace Compress.

The "compress"~ operation is removed for the same reason

as the "average" operation; a reasonable paging algorithm
.7

*- :'- does not exist. In its place are two operations; "sort" and .

22



"union". The reason behind this is that it simplifies the

removal of duplicate tuples (keys). To remove duplicates, S

each tuple must be compared against every other tuple in the

relation. By sorting the data, duplicate tuples will be

adjacent to each other and can easily be removed during the

sort phase. The reason both a "sort" and "union" operation

are required is because a QP cannot sort the entire relation

at once. It can only sort the portions of the relation which

are in memory. Therefore, each QP can sort a portion of the

relation, and then each of these parts can be unioned to-

gether with a merge sort algorithm. S

Modify Insert.

I, The "insert" operation discribed by Rogers (12: 52-53)

is essentially a "union" operation of a single tuple into an

existing relation with an error reporting capability for

unwanted duplicate keys. The "insert" operation should be

expanded to allow the insertion of an entire relation. This

way, the user would be able to insert multiple new tuples

into an existing relation with a single query. The reason

for this modification is to reduce the cost of inserting

tuples, but because duplicate keys must be reported, the

modified "insert" operation requires two output files (the

output relation, and a duplicate key error file). This

changes the ideal page ratio of the MBU per QP from six to

eight.

23
..S ..



Add Intersect.

An "intersect" operation is added to the QPs because it

is easy to implement, and a powerful operation. An "inter-

sect" is a subfunction of a "Join". It requires both

relations to be identical in attribute types and order, and 0

selects only tuples where all fields are equal. While an

"intersect" could be achieved through the "union" and "dif-

ference" operations, it is simpler to include it as an indi-

vidual operation.

Modify Min/Max.

Rogers states that the "minimum/maximum" operations

return the tuple with the smallest/largest value. It does

OL not state what happens if many tuples have the same min/max

value. Since most other relational system return a value

rather than a min/max relation, the "min/max" operation will

be modified to return the smallest/largest value of the .

relation, not the tuple(s).

Modify Value-Returning Operations.
B

Rogers thought that the QPs should not pass "small data

items" directly to the BCP because it is unfeasible for the

BCP to consolidate the answer of several QPs. The reverse is

actually true. It is easier (and faster) to consolidate

single value answers from several QPs than it is to provide

the additional paging scheme needed to make a second pass

over the resulting output relations. Therefore, operations

24
. .B



" .. "

which provide a single answer value (such as "count", sum",

"min", and "max") will return the answer in the response

message, and not in a output relation.

Summary of Query Step Operations

The initial version of the backend system will have 15

different query step operations. A brief discussion of each

operation and its classification is given here. For a more

detailed discription, reference Ullman (14: 152-156) and

Rogers (12: 39-69). Each operation is classified as either

a retrieval or update type operation. Retrievals may be

performed on temporary and/or base (permanent) relations, and

any output relation will be a temporary relation. Updates

may only be performed on base relations, and their output

relations replace the old base relations.

The first group consists of "unary" relation operations,

and the second group consists of "binary" relation opera-

tions. The following definitions are used in describing the

operations.

* selection criterion -- A set of boolean (ANDs and ORs)

conditions to allow comparison of an attribute field value
against a constant or different attribute field value.

* attribute list -- A list of attribute field

identifiers.

* modification list -- A list of attribute field

identifiers followed by a new value to be stored in the
field.

-2

. . . .. . .25*.. . . . .. *.*. .. *. . . . . . . . . . . .



Unary Input Relations

Select (retrieval) -- Given a selection criterion, copy
any matching tuples into the output relation.

Delete (update) -- Given a selection criterion, copy any
tuple not matching the criterion into the output relation
(remove those that do match).

Modify (update) -- Given a selection criterion and a
modification list, modify the specific attribute fields of
any matching tuple, and store in the output relation.
Otherwise, simply copy the unchanged tuple into the output
relation. Note, the modification list cannot contain key
fields.

Count (retrieval) -- Given a selection criterion,
increment a counter for each matching tuple. Upon
encountering EOF return the total count to the user.

Project (retrievil) -- Given an attribute list, reorder
the tuple's field value to match the new attribute list and
remove any fields not listed. Write the modified tuple to
the output relation.

Min (retrieval) -- Given an attribute list, perform a
project, except instead of writing the modified tuple,
compare it against the currently smallest tuple found,
keeping the smaller tuple. Upon encountering EOF return the
smallest tuple value.

Max (retrieval) -- Same as min" except maintain the
largest value.

Sum (retrieval) -- Given an attribute list, maintain a
sum of each attribute field. Upon encountering EOF, return a
tuple containing the sums in the order of the attribute list. .-
It is an error to attempt to sum a character field.

Sort (retrieval) -- Given an attribute list, sort the
relation based on the order of the attribute list. If no
attribute list is provided, sort the relation on its current
order.

I

Binary Input Relations

Product (retrieval) -- Provide the cross product of two
relations by concatenating each record in the second relation
to the end of each record in the first relation.

26

I



Join (retrieval) -- Given a selection criterion, perform
a combined "select" and "product" to form an output relation.

Intersect (retrieval) -- Perform an intersect operation
on two relations with identical attribute lists.

Diff (retrieval) -- Perform a difference operation on
two relations with identical attribute lists.

Union (retrieval) -- If the output relation needs to be
sorted and/or duplicate keys must be removed, perform a merge
sort algorithm. Otherwise perform a file concatenation. This
operation is only valid on two relations with identical
attribute lists.

Insert (update) -- Take a base relation and an "insert"
file and perform a "union" type operation generating a new
base relation and a duplicate key error file.

Summary of BCP Commands

The BCP commands are provided to allow some external

control of the BCP's actions. They essentially provide the

ir user the capibility to break out of the query. Any command

to the BCP is verified and validated by the FE, and will only

allow a user to affect his own queries. The initial set of

BCP commands are:

* stop query
* start query

abort query
change priority
status

The "stop query" command will allow a user to halt any

of his queries currently in the system. The command causes a

specific query to be removed from the active task pool and

placed into the inactive task pool. Any QPs working on this

query will be preempted by other active tasks.

The "start query" command is used to restart an inactive

27

I

...............-...' % . . . . . . . . . . . . . . . . . . . . . . . . . .." .-." .."-'. .., " _ ¢ ,' -" - - Zq #-" , . .- ' -- -,.'.-'



query. It moves a specific query from the inactive task pool

to the active task pool.

The "abort query" command deletes the query from the

backend system. Any QPs currently working on the query are

preempted.

The "change priority" command allows a user to change

the priority of a specific query.

The "status" command returns the current status of a

query. This would include its location in the queue, number

of QPs acting against the query, number of query steps left

to process, and current task pool (active/inactive). p

S
PII

28

I

S. .-. ".. . .. "



IV Paging Theory

Introduction

Since the backend system intends to break a query down

into query steps, and then further split the query steps

between "independent" query processors, it would be nice to

insure that the results are the same as if the work were

performed on only a single processor. Since there are many

references on query optimization (13: 51-78) (14: 268-283)

which deal with the breakdown and reordering of individual

query steps, this part of the proof will be dispensed with.

The chapter will proceed with confidence that the query can

correctly be formed into an optimized query tree.

It must proven that all the query processor operations

can be split among individual query processors and rejoined

to provide the same results. Those operations are:

select
delete
modify
count
project
min
max
sum
sort
product
join
intersect
difference
union
insert

In all the following proofs, R is defined to be an

29

......... J



arbitrary relation, which can be split into disjunct

n
subrelations RI, R2, R3, .. o Rn such that R = U Ri.

S is defined to be an arbitrary relation which can be split

into disjunct subrelations Sl, S2, S3, ... Sm, such that

m
S = U Si.

i-l

Select

n
Select (R) = U Select (Ri)

i-l

Proof: Show that

(1) Left Hand Side (LHS) C Right Hand Side (RHS), and

(2) that RHS C LHS.

(1) Let x E LHS. So that x E Select (R), thus 3 r E R such

n
that x = Select (r). Since R = U Ri, and r C R, then for some

j between 1 and n, r4E Rj. Thus Select (r)E. Select (Rj).

n
Since Select (Rj) C U (Select (Ri)), then

n
x Select (r)4E U (Select (Ri)). Therefore the LHSC RHS.

i-i -- '

n
(2) Let x 6- RHS. So that x 6 U Select (Ri), then for some

i-i

j between 1 and n, x4E Select (Rj), thus 3 r L Rj such that

n
x Select (r). Since r E Rj, then r e U Ri, so that -

i-i ,2..ii-I

30

. . . . . . . . . . .Z!•Z 7°•..



n
x - Select (r)E Select (U Ri) = Select (R). Thus RHS C LHS.

Since the LHS C RHS and the RHS C LHS, they are equivalent.

Delete

n
Delete (R) = U Delete (Ri).

Since the "delete" operation is essentiallly a "select"
S

operation with the selection criterion negated, its proof is

the same as that of the "select".

Modify P

n
Modify (R) - U Modify (Ri).

i= 1 "- -

The "modify" operation uses a "select" criterion to determine P

which tuples to modify. The modification of a tuple is

independent (since keys cannot be modified) of the selection

order or modifications of other tuples within the relation. S

Hence, its proof is the same as that of the "select".

Count

n
Count (R) =7 Count (Ri).

Count also uses a "select" criterion to determine whether or S

not to count a tuple. Since addition is associative and

commutative, the grouping and order for tallying matching

tuples is irrelevent.

31
S .



Pro iect

Project (R) = U Project (Ri) .
i-i

Proof: Show that (1) LHS C RHS, and (2) RHSC LHS.

(1) Let xF LHS. So that x E Project (R), thus3 rE R such .

nthat x = Project (r). Since R - U Ri, and r E R, then for

some j between 1 and n, r E Rj. Thus Project (r) E Project (Rj).

n
Since Project (Rj)_ U Project (Ri), then

i-l

n
x = Project (r)4E U Project (Ri). Therefore LHS C RHS.

n
(2) Let xF RHS. So that x E U Project (Ri). Then for somer~.i-i m _

j between 1 and n, x4E Project (Rj). Thus 3 r6 Rj such that
n

x = Project (r). Since r E Rj, then r C U Ri, so that

n
x - Project (r)E Project (U Ri) = Project (R).

Therefore RHS C LHS.

Since the LHSC RHS and RHS C LHS, they are equivalent.

Min

n
Min (R) M Kin (Min (Ri))

The "min" operation is a "project" operation that returns the

-- value of the smallest tuple within the project. Since the

32
I

. . . . . . .. . . °-. ".'.o" . . . .*. . '.-..°.°%- ... .o. o .o . % V*o..o .. ,°+. ,. °- • -



minimum function is associative and commutative, the grouping

and ordering of the tuples is irrelevant. S

Max

Max (R) - Max (Max (Ri))
i-1 0

The "max" operation is the same as "min" except that the

largest value is returned.

Sum .

n
Sum (R) =" Sum (Ri).

i-i

The "sum" operation uses an attribute list to determine which

fields to sum. Since addition is associative and commutative,

the grouping and order is irrelevant.

Sort

Sort (R) = R.

Because the "sort" operation simply reorders the relation p

without changing the set, the set is equivalent regardless of

ordering.

Product

n m
Product (R, S) - U ( U Product (Ri, Sj)).

i-l j-1
S

Proof: Show that (1) LHSC RHS, and (2) RHSC LHS.

(1) Let x C LHS. So x £ Product (R, S) thus 3 r E R and

n
sE. S such that x - Product (r, s). Since R = U Ri and .

33

3 ..-



r C R, then for some k between 1 and n, r E Rk. Since

mS = U SJ and s E S, then for some 1 between 1 and m, s oE S.

i-i

Then Product (r, s)4E Product (Rk, Si), and

n m
Product (Rk, S1)C U ( U Product (Ri, Sj)). Thus

i-l J-1

n m
x -Product (r, s) E U ( U Product (Ri, Sj)).

i-i j-1

Therefore the LHS C RHS.

n m
(2) Let x E RHS. So x C U ( U Product (Ri, Sj)). Then for

i-i J-i

some k between 1 and n, and some 1 between 1 and m,

x Product (Rk, S). Thus3 rE Rk and 3 s e S such that

n
x = Product (r, s). Since x E Product (Rk, Sl), then r e U Ri

m n m
and s e U Sj. So x - Product (r, s) E Product (U Ri, U Sj)

j-i i=l j=1

- Product (R, S). Hence RHS C LHS.

Since the LHS C RHS and RHSC LHS, they are equivalent.

Join

n m
Join (R, S) - U ( U Join (Ri, Sj)).

i-l J-1

The proof for "Join" is the same as for "product".

34



Intersect
n m

Intersect (R, S) -U CU Intersect (Ri, Si)).
i-i J-1

Because the "intersect" operation is a special equivalence -.

join, where the order and number of attributes in both

relations R and S are identical, it is proven by the "Join"

operation's proof.

Diff
n

Diff (R, S) -U Diff (Ri, S).
i= 1

Proof: Show that (1) LHS C. RHS and (2) RHS C LHS.

(1) Let x 6 LHS. So that x C. Diff (R, S), thus 3 rC R such

n
that x -Diff (r, 5). Since R -U Ri, and r46 R, then for

ILI
some j between 1 and n, r C. Rj. Thus Diff (r, 5) C Diff (Rj, S).

n
Since Diff (Rj, 5) C U Diff (Ri, S), then

i-i

n
x -Diff (r, 5) 6. U Diff (Ri, 5). Therefore the LHS C RHS.

n
(2) Let x OE RHS. So, x £ U Diff (Ri, S). Then for some j

between 1 and n, x E Diff (Rj, 5). Since x 4E Diff (Rj, 5),

then 3 rC-RJ such that x -Diff Cr, 5). Since r 6 Rj, then

n n
r£ U Ri, so that x -Diff (r, S) oEDiff (U Ri, 5)

-Diff (R, S). Thus RHS C LHS.

Since LHS C RHS and RHS C LHS, they are equivalent.

35I



Union S

The purpose of the "union" operation is to join files

together. Because of this, it will not be split across
processors. 0 )

Insert

The "insert" operation is the same as "union".

.'7

.. .. ...



V Local Hardware and Restrictions

Introduction

Rather than purchase the expensive specialized hardware

necessary to implement a complete backend database system,

the initial design will be performed on equipment currently

present at AFIT. Once a working model of the backend is

available, it will be easier to determine specific hardware

requirements needed to improve performance. This chapter

will discuss the available hardware at AFIT, and the compro-

mises necessary in the overall design of the system.

Developement Hardware

The initial version of the BCP was developed on an S-100

system with the CP/M version 2.2 operating system, and the

BDS 'C' compiler. This should make the BCP transportable to

any system capable of running CP/M and with minor modifica-

tions to any system supporting a 'C' compiler. The S-100

system included:

* a dual 8 inch double density floppy disk drive
* Advanced Digital Corporation "Super Quad" card (1)

with:
Z-80A cpu (4 MHZ)
Floppy disk controller
64K of dynamic memory
2 serial ports
2 12 bit parallel ports

37

............ ~ .*°- * *-4..

. . . . . . . . . . . . . . .. .* * . . -t °



Parallel
Host, Port
etwork
r CRT BP

I

Figure 3. Initial Developement System Configuration.

Initial Configuration.

The BCP was designed so that upon completion, it could :

be moved to one of the Z-1OO systems. The 5-1O0 system could p.."

be upgraded by the addition of four Advanced Digital Corpo- i~~ii);

ration "Super Slave" cards to create a multi-processor sys- I :

tern. The remaining components of the backend would be housed i
within the S-1OO system. The "Super Quad" card would become

the FE and the MSU, and each "Super Slave" card would become

a QP. The floppy disk would provide the physical storage (See |.

Figure 3). Each QP will communicate with the BCP through a ,,..
serial port, and send/recieve data pages over the S-Bus bus. ,,'.

--- The BCP is also connected to the "Super Quad" (FE) card via a | )

38 - :1

Salav$
......................- -



serial and parallel port. The serial port will be used to

send disk commands, while the parallel port will be used for

communications with the FE. The reason for using separate

ports is to create a logical difference between the FE and

the MSU to allow for future expansion.

Drawback

There are two major drawbacks to the initial system

configuration. First, all disk I/O must pass thru the FE

processor. Second, there is no MBU.

Initially, the FE and the MSU (disk) will both be on the
S

"Super Quad" card. During initial development (i.e. while an

actual database does not reside on disk), this should not

present any problem. But once the MSU actually begins paging

data in and out of the QPs, this processor will become the

bottleneck of the backend system. Even without the FE on the

"Super Quad" card, it is expected that the MSU will be unable

to supply the data pages to the QPs as fast as the QPs can

process them. This means that even without the extra burden

the FE places on the "Super Quad" card, the QPs will fre-

quently be idle waiting for data pages.

The second problem with the initial configuration is the

lack of an MBU. Because of this, a minimum of eight logical 9

pages of memory in each QP must be reserved for data buffer

space. This restriction interferes with the backend's abil-

ity to allow pipelinq query step processing. The "Super

* Slave" cards are not able to activate the S-1O0 bus, so data

39

S

.'."



may not freely pass between QPs. This means that as a QP

finishes a page of output data, the MSU must read the page, .

and rewrite it into the follow-on QP data buffer. Because

the paging algorithm was designed to operate on shared pages

in the MBU, and not copy data between buffer pages, the

initial version of the BCP will not handle the pipelining of

query steps. This restriction should be corrected at the

earliest opportunity since efficient pipelining would ease

some of the MSU bottleneck.

Alternative Configuration

An alternative configuration is included here because of

the notable shortcomings of the original configuration. This

alternative configuration is provided more as a thought pro- p

yoking concept than as a solution. It is hoped that any

follow-on investigators will accept the better ideas pre-

sented here, and reject those for which they can devise a p

superior architecture.

The alternative configuration includes an additional

micro-processor with its own disk drive (See Figure 4). The

FE would be placed on the new processor, and the database

data dictionary would be stored on the disk. This would

allow the FE quick access to any information needed for query S

optimization while reducing the burden of the database MSU.

The "Super Quad" card would then contain the MSU driver,

while the bulk of memory on the "Super Quad" card would then

40

....................................................... ..



become the MBU.

DD~S-0 Bus0orZ-0

(FP

Fiur 4. uAlerQaiSlve DeeSemnloniu aon

Dik(S MU Q)(P

I~i

or

41



VI Data Structures

Introduction

There are numerious data structures used throughout the

BCP. For the reader to gain a firm understanding of the BCP

software, one must first understand the data structures and

the utilities provided to manipulate them. This chapter will

discuss the following major data structures plus the sub-

structures of which they are composed

task tree

message queues
frontend structures
query processor structures
mass store unit structures
system status structure

, Each structure will be discussed in a bottom-up approach,

followed by a short explanation of modules designed to oper-

ate on the structure.

Task Trees

There are two types of task trees used within the BCP.

The first one is called "tasktree" which contains all

active queries (with their query steps & files). The second

is the "stopped_job" which has all the queries that have been

temporarily halted.

The task trees are built up from query branches, which

contain query trees. Each node in the query tree (called

query nodes) contains a query step and has pointers to its

input/output relations (See Figure 5).

42

pi



tasktree

Firee 5.Ovrveo Takreercue

Query Qu43

Ba c Query .. .. .. .nc



Within the BCP, there are two types of relations. Base

(permanent) relations, and temporary relations. Each of

these are treated differently at the lowest level.

Relational Database Files (base relations)-

The base relations have all their pertinent data stored

in the "base rel" structure. This structure contains:

relname -- name of the base relation.

sorted -- boolean flag:
TRUE --i> relation is sorted,
FALSE =-> relation is not sorted.

rel_size -- number of logical pages in the relation.

File List (temporary relations)

A file list is a logical relation. When several QPs

operate on the same query step, each QP qenerates its own

output file. Rather than physically join the separate files

(requiring additional I/0 paging), the files are logically

combined through a file list.

The "file list" is a circular doubly linked list of

temporary output relations. It consists of:

prevfile -- pointer to previous file in linked list.

nextfile -- pointer to the following file in the linked
list.

filesize -- size of file in logical pages.

file id -- file identifier used by 'C' open function.

status -- QP id of QP writing to/reading from the file
(-1 if none).

filename -- name of the file being written/read.

44

L.............. "-... . .. . .. . .. . .

- .. . . . . . . . . . . ...... . .t-......-



Query Node

The "querynode" structure takes all the data related to

a single query step and consolidates it in one location.

Thus there is a one-to-one correspondence between query steps

and query nodes. Because of this, the terms "query step" and

"node" are often interchanged within the code documentation.

All the query nodes of a single query are stored in a
I

modified binary tree structure (See Figure 6). The query

node is used to connect all the query steps of a query in a

logical form, and maintain information about the input/output

relations of each query step. The query node consists of:

parent -- pointer to parent node (NULL if root node).

rchild -- pointer to right child (NULL if no right
child).

lchild -- pointer to left child (NULL if no left
child).

prevleaf -- pointer to previous bottom-most leaf (NULL

if this node has any children, or is the first bottom leaf).

nextleaf -- pointer to next bottom-most leaf (NULL if
this node has any children, or is the last bottom leaf in the
query).

branchp -- pointer to querybranch of this query.

stepp -- pointer to the query step for this node.

relation [3] -- pointer to the three relations (files)
accessed by this query (two input, one output).

file type [3] -- indicates if a relation is permanent or
temporary.

rel_sorted [3] -- indicates if the relation is currently
sorted.

errorfile -- pointer to the error file.

45 ...I . -

4 5 .



= . .• . . • , .

numberqps -- number of QPs currently working this query
step.

node (0] -- dummy variable - this is where the query
step is actually stored.

To To
Previous Next
Branch Branch

back Query forward

q~root \ x firstleaf i..

Query .-
No de -'\S

Query
[ Node Query

Node "ii--'

Qu r Qu ryuery \ .. '.

Node Node " Node

Query Query Parent/Child Ptr

Mode N-ode
Next/Prev Leaf Ptr

Figure 6. Query Tree (Branch).

Query Branch

The query branch takes all the data related to a query

and consolidates it in one place (See Figure 6). There is a

46
e. -. .............



one-to-one correspondence between the query and the query

branch. It contains:

back -- pointer to previous branch.

forward -- pointer to next branch.

q_root -- pointer to root node of query step (query
node) tree.

firstleaf -- pointer to first leaf without children.

headnode -- pointer to query header.

botcount -- number of bottom-most leaves in the query.

tagid -- tag number of next file for this query. As
files are needed for temporary storage, they are created by
concatenating <jobid> "." <tag>, where <jobid> is the query
job identifier, and <tag> is the tag identifier. "tagid"
ranges from 0 to 999. If this should prove to be insuffient,
alphalnumeric tags could be used instead of numberic tags.

last (0] -- dummy variable - this is where the query
header information is actually stored.

Task Tree

The task tree contains all active queries with their

associated query step and files (relations). It is simply a

pointer to the highest priority query branch (See Figure 7).

The overall structure of a Task Tree is as follows:

* the tasktree points to the highest priority query

branch in a circular doubly linked list
* each branch has a query header and query tree
* each node in a query tree has a query step and several

file lists
each file list contains the names of all the physical
files that make up the logical file

Since the task tree structure is so complex, it requires

special modules to simplify its use. Below is a brief dis-

cription of existing modules designed to act on the task tree

47

.......................................... • , "



* . - - . -, - - - ~ - -.. .-- .,-.

Tasktree

Figure T.rihevel iwo akre

Branch

Query

a atert hTrree

Baranch
u bBranch

task tree

Figure 7. Highlevel View of Tasktree.

and its components...-

rebuild_query_tree (FE msg, Branch)--..
Takes an input que ry from the FE and rebuilds it into-'-
a tree form (query branch), returns pointer to the
root node.

place in task tree (task tree, branch) --.
Adds9 a query branch to the task tree. Returns i-

task-tree.-...

disconnect branch (task tree, branch) -. "
Removes a query branch from the task-tree. Returns..-..
task-tree. "-

trimbranch (tasktree, branch)
Deletes a query branch from the task tree, and .
frees up any storage used by the branch and its

48

* * . . -* .. .*.-- .

.. .. .. .. . .. .. .. . .. .. .. .. . .. .. .. .. .
.- * . -. . -. * ..**. -. ~*-S.- *.-* * .-,.'o- *



I

components (querynodes, file list, etc.).
Returns task tree.

trim (tasktree)
Deletes the entire tasktree and frees all storage of
its components.

countleaves (task_tree)
Returns the number of bottom-most leaves in the
entire tasktree.

selecthighleaf (task_tree, leaf)
Returns pointer to the next highest priority leaf
after the input leaf (if input leaf is NULL, return
pointer to the highest leaf in tasktree).

kill subtree (query_node, relindex)
Deletes and frees all nodes in the sub-tree of the
input node. Deletes and frees temporary files with
an index less than rel index. By setting rel index
equal to two, only input relations are deleted, p
leaving the output relation intact so the next query
step can use it for input. By setting rel index to
three, all files, input and output are freed.

trim-leaf (leaf)
Deletes and frees a bottom-most leaf and its input
files. Relinks the output file to the parent node as
an input relation. Return boolean; TRUE if query is
complete, FALSE otherwise.

free files (file)
Frees storage of a logical file, deletes temporary .
relations from disk.

remove file (file, leaf)
Deletes a single physical file from a logical file.
Returns pointer to first physical file of the logical
file. .

npages (leaf, rel_id)
Returns number of logical pages in file indicated by
the relid.

getfilename (branch, name) 0_

Sets name to a unique file name.

Also included for debug purposes are:

dumptt (task_tree)
Dump the entire tasktree in hexadecimal.

49
a- • ,



dumpbranch (query_branch)

Dumps the query branch.

dump subtree (node) 
-

Dumps the sub-tree beginning at input node.

dump rel (node)
Dumps the relations of the input node.

dumpfiles (relation) t
Dumps the file list of a temporary relation.

Message Queue

The message queue is a single linked list priority queue

for holding messages passed between the BCP and the other

system components. There are two message queues in the BCP;

one for incoming messages, and one for outgoing messages.

The structure of the message queue consists of:

m type -- component type (FE, MSU, or QP) of source or
L __ . destination.

m_id -- component identifier number (because of
multiple QPs).

m_time (test value) time message was sent/received.
This is the current priority field.

mpt r -pointer to the message.

m-next -- pointer to next message structure in the queue.

The following modules act on the message queues.

add_queue (queue, message)
Allocate storage for message and place the message
into the queue. Returns pointer to top element of
queue.

remove queue (queue)

Removes top element from queue and frees storage.
Returns pointer to top element.

readqueue (queue)
Returns pointer to top element.

50

~. ~ . . .... "..,_

""."," - .. " . "- ' "' "" " ' " "'- . .'~ - " ' -'' -' " - ' - ' " -' -' 2 ' " __"" " < aA"- ' .. "3a!. .5i:".



* FE Structures

The FE must pass two types of messages to the BCP;

command and query messages. Because of time limitations, the

BCP command handling routines have not been designed in

enough detail to create a command structure. Thus no struc-

ture is shown for the command message. The query message

(See Figure 8) consists of a "queryheader", following by an

array of "baserels" (one per base relation accessed), and an

array of "query steps" (one per step query in the query).

The "base re structure has already been discussed in detail

under the "task tree" structureo -

-'Query Header7 Base Rel [11 Base Rel (2]

BaseRel [num in_rel] QueryStep (1]1 Query-step (2]

Query Step [num-node]

Figure 8. FE Query Message.

51

.- .. . . . . *o% *-*. .

unerth "as .tee structure. . -S..



Query Step

A query step is a single operation to be performed on a

relation(s). The operations are discussed in Chapter 3. The

"query step" structure contains all the information needed by

the QP to perform the specific query step operation on the

assigned pages in the MBU.

Because this is a complex structure and subject to

evolve, a version number is included to allow the backend

system to work with multiple versions of "query step" struc-

tures if needed. The BCP only uses the header portion of the

"querystep" structure, the remaining sections may be freely

modified by the FE and/or QP design with no effect to the

BCP's performance.

Query Step -- Header

qsversion -- version number of the query step (should
be zero)

len_step -- number of bytes needed to store the query
step. Because the query step structure varies in length
depending upon the selection criterion, modification list,
and attribute list, this field is included to enable the BCP
and the QPs to know the exact size of each query step.

type -- type of query step operation (i.e.
"Select", "Project", "Join", etc.).

reltype [3] -- three rel types are included because a
query step may have two input relations and one output
relation. The "reltype" field is used to distingish between
base (permanent) and temporary relations. For "unary"
relational operation, the second input file is set to NULL.

relptr [3] -- this is really an index node number,

because it is impossible to pass the actual pointer value

* between two processors without shared memory. When the FE
passes the Query Tree to the BCP, it numbers the query steps

52

S.•.,...°.....-...........,.. .. .,. ......... .-. . ... %-, .-.-. ,..-.o-°.-



in the order that they are sent. Later, as the BCP rebuilds
the Query Tree, the actual pointer values are computed.

Note: rel_type and relptr are used by the BCP to rebuild
the Query Tree. The QPs do not use these fields.

dupsok -- a boolean flag to determine if duplicates
are allowed in the query step.

TRUE ==> keep duplicates,
FALSE -> remove all duplicates.

ratio [2] -- (for testing BCP only) this field is used
by the "fake qp" module to simulate the reduction of data for
a query step. It contains two percentage numbers: minimum
and maximum amount of data. Two examples of its use are - -

given here:

Example 1: On a "sort" operation, nearly all data in a
page is retained (duplicates are removed), so by setting
ratio [0] = 99, and ratio [1] - 100, the fake QP would
retain between 99 and 100 percent of all input data in
the output relation.

Example 2: On a "select" operation, a large
percent of the data will be removed. If the ratio
were set to 0 and 100 respectively, then each page of
the input relation might be completely empty or full of
"useful" data. The average would be 50 percent of the
data being retained.

Query Step -- Selection Criterion

The remainder of the "querystep" structure is not used

by the BCP and will be dictated by the QP's needs and what

the FE can supply. What is given below is the author's view

of the necessary information

numands -- the number of AND conditions which must be
met to evaluate the selection criterion as TRUE.

len_and [num_ands] -- the length of each individual AND
condition. This is provided so that the remaining part of an
AND condition can be skipped if a single OR condition inside
the AND evaluates to TRUE.

num_ors [numands] -- the number of OR conditions within
each AND condition. Note: an AND condition without an OR is
treated as if it had one OR condition.

53

. . .. • ..- |

" ,- .,->.. ; :.:: :_: :: ' , J : .: -.- "... .... .... .-.. . . . . . . . . . .,.. . . . .". . . " -' , _ -- ' " "' " ' ' " '



• Example Selection Criterion for a "select" operation:
select * --
where salary < 8000 & (job- "clerk" job - "student" .

job I- jobtitle) (state < "LA" country I= "USA")

This selection criterion has three AND conditions. The first
AND has no OR condition, but is treated as if it has a single
OR condition. The second AND has three ORs, and the last AND
has two ORs. In any AND condition, as soon as an OR condi-
tion evaluates TRUE, the remaining portion of that AND may be
skipped. Likewise, if any AND evaluates FALSE, the selection
criterion evaluates to FALSE, and further checks may be
skipped.

For each OR condition inside of ap AND condition, an

attribute must be compared against some other value. The

rest of the selection criterion fields deal with determining

which attribute to compare to what value.

fieldtype [numands, num ors] -- type of data field.
It must be one of the following:

c -- character string
d -- double precision I-.-
f -- float
1 -- long integer
i -- integer

Note: BDS 'C' only supports character and integer variables.
Therefore, the initial version of the backend system will
only support these two data types.

lenfield [numands, numorsi -- gives the length of an
attribute field in bytes for fixed sized tuples. Otherwise
it is set to zero for relations with varying length tuples.

locfield [num_ands, numors] -- gives the starting byte
number in fixed relations. Gives the field number in varying
relations.

Example of fixed relation:

If relation 'X' were defined as:
supply int,
job char (10),
jobtitle char (10),
state char (2),
country char (10);

54

. . . .. . . ° .* . . * .. . . . ....- * .. . . . . . . . • - - - -°



Then if attribute field "jobtitle" were being used in a
selection criterion, then

fieldtype = 'c',
len field = 10,
locfield = 12;

Example of varying relation:
If all (or any one) of the character strings in relation

'X' were declared as varying, then 'X' is considered a
varying length relation, and the attribute field "jobtitle"
would be:

field type - 'c',
len field = 0,
loc field = 3;

Note: the len field and loc field fields are collectively
known as the attribute identifier.

oper [num ands, num ors] -- comparison operation (i.e., , ,, , >= , and )

field or constant [numands, num_ors] -- determines if
the comparison is against another attribute field or a
supplied constant.

"f" ==> field comparison;

I t "c" f=> constant comparison.

Note: for "join" operations, this should always be a field to
field comparison, and the first field should be from the first
input relation, while the second field should be from the
second input relation.

len f or c [num_ands, numors] -- if fieldor constant =
= "f" then this is the same as len field. Otherwise, this is
the length (in bytes) of the following constant value.

f orc [num ands, num ors] -- if field or-constant -
then this is the same as lofield. Otherwise, this is the
constant value being compared.

Query Step -- Modification List

The modification list given here limits the user to

assigning fixed values to attribute fields. The limit should

be removed so that a computed value may also be used if

P desired.

55
I



num mods -- number of fields to modify.

fieldtype [num mods] -- same as fieldtype in selection
criterion.

len field [num Nods] -- same as len field in selection
criterion.

loc_field [nummods] -- same as loc_field in selection
criterion*.

len newvalue [nummods] -- length (in bytes) of the new
value to be placed in the attribute field.

newvalue [nummods] -- the new value to be placed in the
attribute field.

Query Step -- Attribute List

num atrib -- number of attribute fields to retain in a
project like operation.

fieldtype [numatrib] -- same as fieldtype in selection
criterion

* len field [numatrib] -- same as len field in selection
IL criterion.

loc_field [numatrib] -- same as loc field in selection
criterion.

Query Header

When a query is passed from the FE to the BCP, it has a

query header containing the information needed by the BCP to

rebuild the query into a query tree, and to access the neces-

sary base relations.

h version -- current header version number (should be
zero).

num node -- number of query steps (nodes) in this query.

len head -- length of query header (including "base rel"
array) in bytes.

56

..................



lenasg -- length of the entire query message including
all the query steps.

numinrel -- number of input (base) relations accessed.

priority-- priority of this query (0 - highest,
255 - lowest).

job_id -- job identifier (must be unique).

rel info [0] -- dummy variable - this is where the
"baserel" array is placed. There is one "baserel" structure
for each base relation accessed.

The FE query message is build into a "querybranch"

structure by calling:

rebuild_query tree (FEmsg, branch)

Takes an input query message from the FE, and
rebuilds it into a tree form (querybranch).
Returns a pointer to the root node.

QP Structures

There are four structures in the BCP that deal with the

QPs. They are:

query_step -- query step for the QP to execute
qppage info -- paging information

* qpstatus -- status of each qp
* queryprocessor -- (test only) fake QP simimulation

The "querystep" structure has been discussed under FE

structures. This structure is passed to the QPs to direct

the type of relational operation to perform. It includes the

select criterion, the modification list, and the attribute

list.

QP Paging Information

The "qppageinfo" is used between the QPs and BCP to

pass paging information. The BCP uses it to direct the QPs

57

• .. O...- . . . .. ..- ...... .. . .... .o. ... " o..... .. . .. . .o-. ... .-- •.-..
°.-%'.°'~~~~~~~~.....o'...... .° .o ...... °....... . ....-.... oo .. '....-.-.'-.. °. .'.. .o''..



as to which pages in the MBU to act against, and what type of

data is in each page (input rel 1, input rel 2, or output

rel). The QPs use the structure to request new input/output

pages. It consists of:

qp version -- current message version (should be zero).

lenqpmsg -- length of paging message.

qp msgtype -- paging info flag. This byte distinguishes
a paging structure from a query step structure for the QP.

qpid -- QP identification number.

buffaddr -- page in the MBU to access.

pagetype -- type of data within the page (rel 1, rel 2,
or output rel).

eof -- EOF flag. The BCP sets this if this is the
last page of the query step. The QP returns this flag after
completing the final input page.

results -- results of a value returning operation.

Q.P Status

The "qp status" structure is used by the BCP to keep

track of which QPs are working on what query steps, and which

page to send next.

active_qp -- actual number of QPs up and running.

freeqp -- number of idle QPs.

qp idle [MAXQP] -- boolean flag for each QP to
determine if it is currently idle or busy.

buffallocation [MAXQP] -- boolean flag to determine if
the QP has been allocated pages in the MBU.

qp step [MAXQP] -- pointer to current query step being
processed by the QP.

qpstart_page [MAX_QP] [2] -- starting page to process
within each input relation.

58



.. .. . .

qpendpage (MAXQP] [2] -- last page for this QP to
process within each input relation.

qp curr page [MAXQP] [2] -- the current page in the
QP's buffer space.

qplogpage_size [MAXQP] [2] -- a logical page size of
each input relation. I

qpfile [MAX_QP] -- pointer to output file.

Query Processor

This structure is used to simulate a QP's processing of

a query step. It is not used in the actual system.

qs_ptr -- pointer to the query step being processed.

qptime -- fake clock time.

freepage -- this is an index into qppage, qptype, and
percent. It is the next available page location.

eofpage -- flag to determine if this is the last page
Ifor this query.

qppage [BUFRATIO] -- MBU page address.

qptype [BUF RATIO] -- Type of page (rel 1, rel 2, output
rel).

percent [BUFRATIO] -- percent of the page already
processed.

MSU Structures
I

The MSU receives two types of messages from the BCP; one

for paging, and one for commands. These structures are used

to direct the paging and file creation/deletion of the MBU.

MSU Paging Information

The "msu page info" structure is used to direct the MSU

to read/write a page into the MBU. It consists of:b -- I
msu version -- version number (should be zero).

59

..................................... ...... ."."



Vw~~ 7. 7

len msu-msg -- length of the paging message,

msumsg type -- this field distinguishes paging p
information from command messages.

page -- page number in the file to read/write.

msu id -- •disk identification (if needed).
,P

readflag -- flag; TRUE -> read from file to MBU,
FALSE -- > write to file from MBU.

bufaddr -- page in MBU to read/write.

file -- filename to read/write. P.

MSU Command Message

The "msucmd msg" structure is used to cause the MSU to

create, delete, or concatenate files on the MSU. It consists

of:

I. msucmdversion -- version number (should be a zero).

lenmsucmd -- length of command message.

msucmd msg type -- flag to distingish command message
from paging information.

msu command -- command to MSU.

n files -- number of files to act on.

files name [n_files] -- array of file names.

System Status

The "systemstatus" structure is used to consolidate all

pertinent data of the BCP in one structure. This is the

BCP's database to control what is happening within the back-

end system. It includes all the structures discussed above

plus buffer addresses, and test files.

60

"L % -



Buffers

The "buffer" structure maintains status of all input

buffers. It contains: I
fe buf -- pointer to FE buffer area.

msubuf -- pointer to MSU buffer area.

qpbuf [MAX_QP] -- pointer to each QP buffer area.

fe buf busy -- flag; TRUE -> FE buffer is not empty,
FALSE =-> FE buffer is empty.

msu bufbusy -- flag.

qp buf [MAX_QP] -- flag for each QP buffer.

Test Files

There are several test files used by the BCP to assist

in debugging the program.

queryfile -- file containing dummy queries.

fein file -- file which directs which dummy queries to
execute.

fetrace trace file for FE messages...

qptrace -- trace file for QP messages.

msutrace -- trace file for MSU messages.

relindex p -- index to query file page containing
queries.

time -- dummy test clock.

System Status (Structure) _

shutdown -- flag; TRUE -=> shutdown in progress,
FALSE ==> normal mode.

idle -- flag; TRUE --> all QPs are idle, and Task
Tree is empty,

FALSE --> has some work to perform.

61

, .4 . . .,.. .... . , . ..... "..,................ ".... '=



buffer_p -- pointer to buffer structure.

tasktree -- pointer to Task Tree. .

qp stat -- pointer to QP status.

queryprocessor -- pointer to qpdata.

outque -- pointer to output queue. 5

in que -- pointer to input queue.

test-files -- pointer to test/trace files.

6

- I

- .'.* * . .. '-."



VII Detailed Design

Introduction

This chapter discusses the major algorithms used by the

BCP. As stated in Chapter 1, the algorithms are not designed

for efficiency, but rather represents a simple-minded ap-

proach to make the BCP operational. '

When a query step is being assigned to a specific QP,

that QP is said to be in a loading phase. During the loading

phase, a QP receives a query step message, and several paging

messages from the BCP. The QP cannot begin processing the

query step until it has received at least one page from each

input relation, plus an output page for the results and error

file (if needed).

In the initial version, each QP will only hold one query

step at a time. Thus there is an idle period between the .-

completion of one query step, and the beginning of the next.

To reduce the idle time in the QPs, the assignment algorithm

attempts to minimumize the number of query steps it must load

for each query. This is done by requiring a QP to complete

the entire query step before it can be assigned some other

operation. So, once a QP is assigned a query step, it must

single-mindedly act on that step regardless of any change of

states within the backend system.

This restriction greatly simplifies the intelligence

needed by the BCP for QP job assignments and paging, but

63

.. ... . -



reduces the backend system ability to dynamically adjust to

the load conditions of the database. It also requires that S

all input relations of a query step be completed before the

query step is assigned to a QP. This eliminates the possi-

bility of pipelining pages through the QPs. 0

Once the BCP assigns a query step to a specific QP, it

must supply input relational pages to the QP, and direct

where the output pages are sent. QPs are basically simple

black boxes that perform specific relational operations on

these pages. This means that if a QP is given a bad input

page, it will not realize the error, and will happily perform

its assigned task, producing bad output. This being the

case, the BCP paging algorithm must be very sophisticated and

'a reliable, or the responses to the user queries will be inva-

lid (thereby making the system useless).

Because the BCP's algorithms are important, this chapter

will discuss them in great detail. It begins with the QP

assignment algorithm, followed by a discussion on the QP

status structure. Next is a rough description of the output

control mechanism and the paging system and its algorithms.

The final two sections cover buffer allocation, and node

splitting.

QPj Assignment

The QP assignment algorithm is called any time there is

at least one idle QP, and the task tree is not empty. To be

64

• o- o" 
o

. .- °- ° , ,- °" o q* ." " °" " Q .= q o ." • • - • o . ° ." = . • • • " q . " . , , ° ° o- -



eligible to be assigned to a QP, a query step must be a

bottom-most leaf in the Task Tree (See Figure 9).

Step 1) The algorithm first gets a count of the number of

eligible query steps, and sets current leaf to NULL (this

causes Step 2 to select the highest priority leaf within the

Task Tree).

Step 2) Selects the next highest leaf in the Task Tree after

the current leaf.

Step 3) If current leaf equals NULL or no more idle QPs,

then it exits.

Step 4) If this leaf does not have a QP already operating
L

on it, then it goes to Step 5. Otherwise, if there are other

'- bottom-most leaves (query steps) which have not been assigned

to a QP, or this is a "union"/"insert" operation, then it

rejects this leaf, and goes to step 2. If all other bottom-

most leaves have a QP processing them, then it determines if

there are enough pages left to process in this query to L

warrant an additional QP. If so,it splits the query step

across two separate QPs.

Step 5) Assigns the QP to the current leaf, marks the QP as

busy, and adds one to the number of QPs acting on this query -

step,

L

65

"a_''. m , u- " "'* %' , 
-
.. .. ." .. e_', *.% .' .' .'... . . ... " .. . ." _' _ * -. . -.



P Assignment Algorithm
Start

SNumLeaf - number of

bottom-most leaves in tasktree
CurrLeaf - NULL

"CurrLeaf = next highest leaf "

or NUlEL or v.exi

AssignQP<1

-> 0 "-,,merge" or

Fiu e . Q Ass 
gnmn 

Algoith

66o

0s u Leaf yes -
'Tt1 _QP +

<e F i e sc 
c o u n t e d _ 

-i

oc- e"

"i-ilno -i no

:7 ILarge -number of pages left
:.Lock Files to process in the query step .-

of the QP with the most pages ::::
left to process•

_.Assign QP lyesLag >

Decrement Idle_QP eC.5 n.al
Increment Work_QP '-'-

:" ~AccountQP +-Wor.QP ii i

Figure 9. QP Assignment Algorithm [. -

:": ~66 ii!



- - .. " °o. 2

I

Overview of System Paging

The BCP maintains the following information about each

QP to aid in controlling the paging algorithms:

a pointer to the query step
a start page index for each input relation
an end page index for each input relation -
a current page index for each input relation P
a logical page size for each relation
a pointer to the output file

For the present, the reader only needs a rough idea of how

each variable is used. A clearer understanding will be

gained after reading over the "Paging Algorithms", and look-

ing at the "Node Splitting" examples.

- The pointer to the query step enables the BCP to

quickly determine the query step type, and decide if two QPs

are working on the same query step.

- The start page index marks the first page the BCP

needs to send to the QP for processing of this query step

segment.

- The end page index marks the last page the BCP needs -

to send to the QP for processing of this query step segment. .... '

- The current page index tells the BCP which page is

currently in the QP, and enables the BCP to compute the next

logical input page for the QP.

- The logical page size tell the BCP how many pages . (-

make up a logical page for each relation.

- The pointer to the output file tells the BCP where to

write any output created by the QP.

67

.. -. . ,.- .o .o . °. . .. .. .... .••. . . . .- . •• • . . - •.°•, .



S. -. -

S!

Output File Control.

Each QP will produce only one response for each query

step it is assigned to act on. This means that if only one

QP is tasked to process a query step, then the output pro-

duced by that QP is t-he response to the query step. But, if

the query step is divided between multiple QPs (See "Node

Splitting), then the response is the combined answer of each

of the QPs.

For query steps that return a value, each QP will return

a single value which the BCP will add or compare to the

existing values returned by other QPs working on the query

step.

For query steps that produce output relations, each QP

assigned to it will generate a unique file. When a QP fills

an output buffer in the MBU, it sends a page request to the

BCP. The BCP adds the data sequentially to the output file,

and provides the QP a new output buffer.

A logical file list is used to logically concatenate the

output files of each QP working on a query step. This file

list is sorted by ascending page number of the first input

relation.

When a query step is completed, it is deleted from the

task tree, and any temporary input files are removed from the

MSU. The logical output file then becomes an input relation

for the parent node. If there is no parent node (i.e. this

is the root of the query tree), then the BCP directs the MSU

68

* *****.*--q *-...**-. .. *~. .. **-..-*.*** . . .



to concatenate all the files in the logical file into a

single physical file. The BCP tells the FE the query has

been completed, and gives it the output file name. The FE

then passes the file to the host system.

Paging Algorithm

The paging algorithms are used to control the paging of

data in and out of the MBU so that the QPs can manipulate the

information in the database. The algorithms discussed are

simplified to highlight the input paging scheme of the algo-

rithms. This is because the buffer allocation scheme and the

output file control are discussed elsewhere in the thesis.

The MBU is not discussed because logically it is part of the

QP memory area.

In the algorithms, the variable m is the logical page

size stored in the QP status structure, and is set by the

buffer allocation scheme.

The BCP has three major paging algorithms:

* general paging algorithm -- this is the paging
algorithm used by most query step operations
sort paging algorithm -- this is used only by the
sort" operation

merge paging algorithm -- this is used by the "union"
and "insert" operations

General Paging Algorithm

Step 1) The BCP sets the "start", "end", and "current page"

indexes for each input relation. The logical page size is set

according to the buffer allocation scheme.

69



Paging Algorithm
Start

Init start, end, and current page
index of each input relation

Load next m pages of relation (1) p
and advance current page index (1)l

Load and increment current page index (2)1

QP processes the data.
Add output to file

ILI

no
current (2)

yes e d(1 > start (2)

Query Step Complete
Exit I

Figure 10. General Paging Algorithm.

70

. -. . . .. . . . . . . . .



Step 2) The BCP directs loading the QP with the next logical

page of the first input relation (incrementing the "current _- -

page" index as it loads).

Step 3) The BCP then loads the next logical page of the

second input relation (if any), and increments the "current
p

page" index.

STEP QP). The QP then operates on the input pages and the

BCP stores any output. After the QP has completed its opera-

tions on the pages within its memory, it requests additional

input pages.

Step 4) The BCP then compares the "current page" index to

the "end page" index of the second relation. If they are

equal, it means that the m pages of the first relation in

memory have been operated on with every page within the

start/end" page range of the second relation. If they are

not equal, it goes to Step 3.

Step 5) The BCP compares the "current page" index to the p
"end page" index of the first relation. If they are equal,

the query step is complete. Otherwise, it resets the "cur-

rent page" index of the second relation to the "start page"

index of the second relation and goes to Step 2.

Sort Pa2inR Algorithms

The paging algorithm for the "sort" operation is unlike

any other paging algorithm used by the BCP. This is because

the "sort" operation requires all the data which is being

sorted to be in memory simultaneously, whereas the other

71

-- . . ***-*. **- C C C .... *,..
- -*- -. *-. ... * *



0

operations are able to work on one page (per input relation)

at a time.

9

IInit start, end, and current page indexe

ILoad m pages and advance current index

QP Sort
Store in Temp File

nocurrent-

yes....

Merge all files
into one file

Exit

Figure 11. Sort Operation Paging Algorithm.

Step 1) The BCP sets the "start", "end", and "current" page

indexes. It sets logical page size to M.

Step 2) It then loads the next logical (I pages) page into

the QP and increments the "current page" index accordingly.

, STEP QP) The QP does an "in place" sort on the data (i.e. a

72
fti



3

Heapsort or QuickSort). These pages are then written into a

unique file.

Step 3) The BCP compares the "current page" index with the

"end page" index. If they are not equal, it goes to Step 2.

This operation continues until the relation consists of many

small files.

Step 4) The BCP then uses the union" operation to merge all

the files into a single output relation.

Merge Paging Algorithms

The "union" and "insert" operations use one of two

different paging algorithms depending on whether the output

relation must be sorted (to eliminate duplicates) or not.

ISorted MerRe (eliminate duplicates)

Step 1) The BCP sets the "start", end", and "current page"

indexes of each relation. It sets the logical page size to

Step 2) Determines if the two input files are sorted. If

an input file is not sorted, create a "sort" node operation

to sort the file. 3

Step 3) The BCP then loads the QP with the next logical page

of each relation and increments the "current page" indexes.

STEP QP) The QP uses a merge sort algorithm to combine the

two separate files. As the QP completes a page from a rela-

tion, it requests another input page from that relation.

Step 4) The next logical page is loaded and the "current

73



,- 
, 

. -.- . . -. - .. * . .-------------------------------------

• '. ~er ge Paging Al gor i thmstr°

Iit start, end, and current page indexes

Selation2 yes

Fre~ate sort node] fcrea-te sort nodel

load and advance current index
of each relation

1P Mer I
ege ..

yes

load and advance load and advance
current index current index
of relation (1) of r elation(2

Fi ur 1. nio/netOeain Pagin Aloitm

yes yes

.-. of input file to the outpufie..-

.'Figure 12. Union/Insert Operations Paging Algorithm.

. .
."o.74



page" index is incremented for that relation.

Step 5) The "current page" index is compared with the "end

page" index. If they are not equal, go to QP STEP.

Step 6) The remains of the other relations are simply conca-

tenated to the output relation.

Unsorted Merge

If the "union" or "insert" operation does not require

the data to be sorted, then the two files are simply concat-

enated together.

Buffer Allocation Scheme

Because the initial configuration does not allow shared

pages in the MBU, a deterministic buffer allocation scheme is

I - used rather than a dynamic one. In the initial system, each

QP has eight (8) pages of buffer space. The reason eight

pages was chosen is because the maximum number of files any

one query step operation accesses at one time is four (two

input relations, one output relation, and an error file). To

reduce idle time waiting for data, double buffering is used

in the general case. This results in eight pages of buffer

space per QP.

Despite the fact that the initial backend system will

use a deterministic buffer allocation scheme, the paging

algorithm was designed for a dynamic scheme (in the hope of

future enhancements). Because of this, a buffer allocation -

scheme is needed to assign logical page sizes for the paging

75
° '. ° ". * .•.. .. *.



S

algorithm.

For unary query step operations (except "sort"), nothing

is gained by making the logical page greater than the physi-

cal page. Therefore, all unary query step operations (except

"sort") will have the logical page size set to one. S

For the "sort" operation, there is no error file or

second relation. Furthermore, the sort algorithm can only

sort data currently in memory. Thus it is advantageous to

bring in as much data as possible at one time. By using an

in-place sorting algorithm (i.e. Heapsort or Quicksort), the

entire eight pages can be used for input and output. Hence j
the logical page size for the "sort" operation is set to

eight. Note that this causes an idle time in the QP while

swapping in new data (i.e. no buffering), but reduces the .

paging requirements by the number of pages within the rela-

tion being sorted.

For binary query steps (except "union" and "insert"),

the pages of the first relation are not swapped until the

entire second relation is read. Because of this, very little

is gained by double buffering the first relation. Instead, S

by doubling the logical page of the first relation, the

number of times the second relation must be read is halved.

Since double buffering is useful for the second and output

relations, and there is no error file, four pages are avail-

able for the first input relation. Therefore, the logical

- page sizes for the relations are four and one respectively. I--

76



For the "union" and "insert" operation, the next input

page could be for either relation. Therefore, double buffer-

ing is advantageous, and nothing is gained by changing the

logical page size. Both will be set to one.

Node Splitting
When a QP is assigned to a query step, the BCP determines

if node splitting is required. If this is the first QP

assigned to this query node, then node splitting is not

performed. The starting page(s) is zero, and the ending

page(s) is the number of pages in the input relation(s).

- Otherwise, if the BCP is assigning an additional QP ("new

QP") to the same query step, then the BCP must split the node

. . into different query step segments. Each segment of the

query step is then processed on separated QPs, and subject to

further splitting (segmentation).

During node splitting, the output files (if any) are

linked in ascending order by their starting page number. The

purpose for this is to attempt to maintain sorted relations

in a sorted order. This procedure works for query step

operations: "select", "delete" "modify", and "diff". It

will also work for the other binary operations if the entire

first relation is less than m pages.

Note that "insert" and "union" operations may not be

split across QPs.

.

..................................................... *......,,..x



Node Splitting Algorithm

The node splitting algorithm consists of two major
ip

steps. The first is to find which QP contains the largest

segment of the query step being split. The second step is to

actually split the query step segment between the two QPs.
p

The algorithms discussed here are simplified versions of the

one used in the BCP software.

Split Node

S

Find largest segment of the
I Query Step
(See Find Largest Algorithm) _

Split segment between two QPs
(See Split Segment Algorithm)

Exit

C] D

Figure 13. Node Splitting Algorithm.

To find the largest query step segment (See Figure 14),

the BCP looks at each QP's query step pointer. If it is

equal to the query step pointer being split, then the BCP .

78

1 - •.

, -" - . - - -" . -•" .* . ", " . ".'.'. ". "." "."." . % *-. :_'.'.* '. .'. .-. ' ._ . % .'.'._*. " .'. -



Find Largest

large -0

yess

Pel (i end in (2nosat 2

Larn ethMx(Lre, Rell rRel

F gr 14 Find La-curgest Qur(Se1eget

Re. 79 2)-sar 2

Es ~ * . 5. 5 .. . ( E ~ ~ 5 5. ' . .. . . . . . . . . . . . . . . . . . . . . . . *. . *



computes the number of pages left to process, For unary

operations, this is the "end page" index less the "current p

page" index, For binary operations, this is the "end page"

index less the "current page" index of the first relation,

times the "end page" index minus the "start page" index of
I

the second relation. The QP ("large QP") with the largest

number of unprocessed pages will have its query step segment

split with the free QP ("idle QP").
p

To split the "large QP" with the "idle QP" (See Figure

15), the BCP first chooses which input relation to divide.

This will generally be the larger of the two relations (for

the "diff" operation, it must be the first relation). Then

the index values for each QP status field is set according to

I the algorithm shown in Figure 15.

80

- . '° -



Split Segment I - Idle QP
L = Large QP

Rell =end (L)(1) -curr (L)(1)
Rel2 =end (L)(2) -start (L)(2)

curr (I)(1) = curr (L() curr (I)(1) =curr ()1
start (I)(1) = curr (I()+ Rell/2
end (I)(1) = end (L)(1) start (I()=curr ()1

end (I)(1) = end (L)(1)
start (1)(2) = start (L)(2)

+ Rel2/2 start (1)(2) = start (L)(2)
end (1)(2) = end (L)(2) end (1)(2) = end (L)(2)
end (L)(2) = start (1)(2) curr (1)(2) = start (1)(2)

(cause next load)

Figure 15. Split Node in Half Algorithm.

81



Node Splitting Example

Let query step 'X' be a "select" operation on a relation
with 1000 pages. Let page size (in) be constant equal to
one.

When the first QP is assigned to query step 'X', its starting
page is set to zero, and the ending page is set to the number
of pages in the relation.

status QP#1
start (1) = 0; current (1) = 0; end (1) = 1000;
start (2) = 0; current (2) = 0; end (2) = 0;
page_size (1) = 1; pagesize (2) = 1;
step = 'X'; file = 'X.0';

Note: File pages are numbered 0 to 999.

After QP#1 has completed 120 pages of the input relation,

QP#2 ("new QP") becomes free and the BCP decides to assign it
to query step 'X'. Since this is an additional QP, the node
must be split. Because QP#1 has already completed the
first 120 pages, its current status is:

status QP#1
start (1) = 0; current (1) = 120; end (1) = 1000;
start (2) = 0; current (2) = 0; end (2) = 0;
pagesize (1) = 1; pagesize (2) = 1;
step = 'X'; file = 'X.O';

The BCP finds the "large QP" by searching all QPs already
working on query step 'X' (in this case there is only one),
and determines which has the largest number of pages to
process. QP#1 has 880 (end (1) - start (1)) pages left.
These pages are split between the "large QP" and the "new QP""
with the "new QP" getting the latter half. The result is:

status QP#1
start (1) 0 0; current (1) = 120; end (1) = 560;
start (2) 0 0; current (2) 0 0; end (2) f 0;
pagesize (1) 1 1; pagesize (2) = 1;
step - 'X'; file - 'X.O';

status QP#2
start (1) - 560; current (1) - 560; end (1) 1 1000;
start (2) = 0; current (2) - 0; end (2) = 0;
pagesize (1) - 1; page size (2) = 1;
step - 'X'; file - 'X.1'; 2

Now a third QP becomes free. During the time, QP#1 completed

82

.......................-......-...*.- .**...--. . . .



50 more pages, and QP#2 completed 80 pages. So

status QP#1 Ist relation is:
start (1) - 0; current (1) = 170; end (1) = 560; S

pages left - 560 - 170 - 390

status QP#2 1st relation is:
start - 560; current (1) - 640; end (1) = 1000;

pages left = 1000 - 640 = 360

So, QP#1 is "large QP" and QP#3 is "new QP". After splitting
the pages in half the status of the system is:

status QP#1 1st relation and file:
start (1) - 0; current (1) = 170; end (1) = 360;
step - 'X'; file = 'X.O';

status QP#3; 1st relation and file:
start (1) - 360; current (1) = 360; end (1) = 560;
step = 'X'; file = 'X.2';

status QP#2; first relation and file:
start (1) = 560; current (1) = 640; end (1) 1 1000;
step - 'X'; file = 'X.1';

tp
This process of node splitting continues as additional QPs
are assigned to query step 'X', and the output files are
linked in ascending order based on starting page number. The
resulting logical file is in the same sort order as the input
file.

Locking Scheme

To insure data integrity, the database must lock each

base relation before accessing the data. The BCP uses both

"read" and "write" locks on the base relations. Temporary

relations do not require locking because only their own query

tree will access them. A "write" lock prevents any other

query step from accessing the relation. A "read" lock pre-

vents any updates on the relation.

During the QP assignment, the locks are checked on any t

83

7I



base relation the query step might access. The file locks

are checked only the first time a QP is assigned to the query

step. During "node splitting", the files are already locked

by the query step and do not require additional locking. If

the "write" lock is locked, or if the "read" lock is locked

and the query step is an update operation, then the query

step is ineligible for assignment

A retrieval operation increments the "read" lock when

first assigned to a QP, and decrements the "read" lock upon

completion. Likewise, an update operation increments and

decrements the "write" lock.

This locking scheme is extremely simple, but inefficient.

" A high priority update query step may be locked out by pre-

vious jobs and skipped over. This would allow lower priority

retrieval steps to place additional "read" lock on the file.

The result is a lockout condition of a higher priority job. .

An improved locking scheme could take advantage of the

current update procedure. Update operations only read the

original file and write to a different output file. Upon

completion, it deletes the old file and renames the output

file to the old input file name. This means that an update

operation could lock a file that has the "read" lock set.

Upon completion of the update, if the "read" lock is still

set, rather than delete the file, the BCP would rename the

file and have all query steps reading the data close their

input files and reopen them with the new name. The last

84

.2°



query step to unlock the obsolete file would also delete it.

This provides a higher concurrence rate and eliminates the

lockout problem.

Error Handling

The BCP error recovery capabilities are non-existent.

If the software is unable to allocate storage or if any other

unexpected results occur, the BCP prints the current module

name and an error message, and halts. This will be inade-

quate once the frontend is operational, and should be cor-

rected.

85



VIII Conclusion and Recommendations

Overview

*i The major goal of this thesis was to provide a working

model of the BCP. Unfortunately, the project has fallen

short of this goal. The following areas were not completed:

* communications software was not implemented

(currently, the BCP interacts with dummy modules
that provide a trace of all I/0 to the BCP)

* only the general paging algorithm was implemented
* file locking mechanism was not implemented
* BCP commands were not implemented

Despite these failings, advances were made in the over-

all design of the Backend Relational Database Management

System. The thesis provided a functional requirements analy-

sis of the BCP along with the software algorithms necessary

to achieve these requirements. It refined some of the query

step operations discussed by Rogers. It included the addi-

tion of the frontend processor to the backend system to

improve system flexibility and modularity. Chapter 3 proves

the feasibility cf splitting queries across several proces-

sors. The thesis effort also produced a starting base for

farther advances to the BCP.

Suggested Advancements

There is still a tremendous amount of work left to be

completed on the backend database system. Initial work that

can be done on the current version of the BCP include:

* completion of the paging algorithm for remaining query

step operations (sort and merge paging algorithms)

86



AD-Ai1 892 BACKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR 2/3
RELATIONAL DATABASE COMPUTER SYSTEM(U) AIR FORCE INST
OF TECH WRIGHT-PATTERSON AFB GH SCHOOL OF ENGI..

UNCLASSIFIED D " PONTIFF DEC 84 AFIT/GCS/ENG/84D-22 F/G 9/2 NL

*uuuuuuuuuuummlomhllllllu

Kin mmmmmhhhhhh

I0lllllll



"./

L3.2

W L.

IL.0 12.0

lIIIJIL5
. .1 .6

.

,t

lIIIl=Lg

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOAROS-1963.A

/* p -2



* implementation of a locking strategy for database files
* design and implementation of the BCP commands (this

would require additional data structures to manage
partially completed query steps (i.e. query which have
been preempted))

*implemention of BCP communication abilities (should
be interupt driven)

Future enhancements to the BCP, once a common or shared

memory device (MBU) is available, to improve system perform-

ance may include:

* design and implementation of an optimized QP assign-
ment algorithm which supports pipelining

* design and implemention of a buffer allocation

algorithm
* modification of QP and BCP so that a QP can be

operating on two (or more) query steps concurrently
(this would reduce QP idle time and facilitate
pipelining)

* determination of optimum file structure (system
currently assumes the use of simple flat files)

Short term advancements within the Backend Database

System include:

implementing Roth's DBMS on the FE, and providing the
tree translation software needed to convert the Roth

*query tree to the BCP query tree
design and implementation of the QPs and MSU

Long term goals of this thesis project remain unchanged

from Fonden's original designs.

Parting Comments

This section will discuss some general comments about

the developement of the BCP from the author's perpective.

The use of SADT to determine system requirements was a tre-

mendous help in the initial phase of the thesis. Several

months of effort were spent discussing with Dr. Hartrum

specifically what the BCP must provide, and what type of

87

I i;. .... --



-07.

support it could expect from the other components within the

backend system. Once the major functions of the BCP were

determined, the SADT became a liability because of the amount

of time needed to modify them for minor changes within the 2

system. After modifing the SADT diagrams several times, they

were not updated for each change and the current diagrams

provided in Appendix C are a mix of the designed BCP system,

and the initial SADT requirement diagrams.

Once the requirements were fixed, the majority of the

coding was completed in six weeks. Part of the reason the

coding was completed so quickly was due to the SADT diagrams.

Having fixed requirements, it was easy to implement and test

the individual functions. Modular code was used to make it

easy to modify one functional area without affecting the next

- . one.

The language used to develop the BCP was BDS C. While C

tends to be a cryptic language, it is very well suited for

systems work. The BDS C is an impressive compiler. It is

able to quickly determine if syntax errors exist in the code

so the programmer is able to spend more time working, and

less time waiting for compile runs (and error reports).

88

...-.. *.***.*** *%* *. * .-. . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . ..% ,N2 2~ . * . '-:



[p

Appendix A:

Glossary

AFIT -- Air Force Institute of Technology

Attribute Field Identifier -- A field length and start
location for fixed length relations. A zero value and a .
position location for varying length relations.

Attribute List -- A list of attribute field identifiers.

base relation -- a permanent relation created by the DBA and
has all domains and attributes stored in the data dictionary. P

BCP -- Backend Control Processor.

BDS C -- A C compiler designed to run on micro systems.

Binary Relational Operations -- A relational operations P
that act against two input files (i.e. product, join, union,
etc.).

CP/M -- An operating system designed to run on micro

systems,

DB -- Database.

DBA -- Database Administrator.

DBMS -- Database Management System. p

DD -- Data Dictionary.

DDL -- Data Definition Language.

FE -- Frontend.

IMM -- Internal Memory Module.

Independent Parallelism -- The simultaneously processing of ..

two (or more) parts of a query which will be joined at a
later stage of the query tree. 

LHS -- Left Hand Side of an equation.

MBU -- Memory Buffer Unit.

Modification List -- A list of attribute field identifiers
followed by a new value to be stored in the fields.

89

Y.



- -- ','. ~~ .~ .- '.-'~ . . . . . . . . . . . . .

MSU -- Mass Store Unit.

Node Splitting Parallelism -- Having several processors .
simultaneously act on different pages in the same query step.

Pipelining Parallelism -- Having the output of a process(es)
being immediately fed into a second processor(s) to complete
the next step of a query.

QP -- Query Processor.

QS -- Query Step.

Query -- A user request to access data within the database
(either update or retrieval).

Query Step -- A single relational operation to be performed
on relation.

Query Tree -- The combination of many Query Step needed to
perform the requested query of a user. P

Retrieval Request -- A query which only reads data from the
database.

I RHS -- Right Hand Side of an equation.

SADT -- Structure Analysis and Design Technique.

Selection Criterion -- A set of boolean (ANDs and ORs)
conditions to allow the comparison of an attribute field
value against a constant or different attribute field value.

Task Tree -- an ordered colection of Query Trees.

temporary relation -- An intermediate relation created to
answer a user retrieval query.

Unary Relation Operation -- A relational operations that
act against only one input file (i.e. project, select, count,
etc.).

Update Request -- A query which reads and writes data in
the database.

90

',," .".-, ' .... '. ' ". ':' '% . "," ,:* . .'.-' . -.". . .'. ' "..." -' " .."." . ... " ... . ".. .. .. .",'.. .." . . -.- ,-" ".* , "* ",. ' . ,,



Appendix B:

Single Processor DBMS (SADT)
p

The high-level SADT diagrams of a single processor DBMS

are included to provide a rough functional breakdown of a

DBMS. This helped solve the problem of how to split the DBMS -"

responsibilities between the FE and the BCP. The breakdown

determined the major functions and logical break points.

Since the QPs were designed for executing queries, and

the BCP's major purpose was to control the QPs, the decision

was that the FE would essentially become a single processor

DBMS except for the actual execution of the queries. The

optimized queries would be passed down to the BCP, and from

here, down to the QPs.

91

. ".. • .

. . . . . . . . . . . ..

p



.- . A •n

A-O Single Processor DBMS

Abstract: This is the environment node. 3

The system is a simple relational DBMS, it receives user
queries, data, aid commands. It acts on the input as a
relational DBMS, and returns either a reply or an output
relation.

9

t

p

• :~~~I":':i

L :.

i' ," °. o92

I ." "o '



a 4

ILO IA

SO"
SML

zZ

(ISL



AO Provide Relational DBMS

Abstract: This is the highest level within a DBMS, it
receives input (either a query, data file, or command), acts
against the input, and returns a reply or an output relation.

Al Get Input is the ears for the DBMS. It listens for
incoming user requests, and stores them in a form the rest
of the DBMS can understand. p

A2 Process DBMS Input is the body of the DBMS. It performs
all the actual work done by the DBMS. It checks the syntax
of user requests, verifies the user's access rights, logs the
transaction, and executes the request.

A3 Send Answer is the mouth of the DBMS. It takes the
results from the DBMS and converts them into a form that the .

user's process can understand.

9

° L

°-

4~ ~ . - . .

. . . . . . . . --- ~ -- ~ .- -~---.-.-,.-~- -.-- -. - - -. ~ _S
4

.A°



II

922

#3 1.-
le La.

C,

01

U

laz

~~95



A2 Process DBMS Input

Abstract: This is the body of the DBMS. It performs all the
actual work done by the DBMS. It checks the syntax of user
requests, verifies the user's access rights, logs the
transaction, and executes the request.
A21 Analyze Syntax checks syntax for all queries, data input

files, and commands. It verifies if the relations and/or
fields exist within the database (this includes checking the

data types).

A22 Verify Access provides data security checks. It verifies
that the user has access rights to the relations, fields, or
commands he is attempting to access.

A23 LoR Transaction provides a transaction log of all queries
and commands run against the database. The log is used for
both backup and security purposes.

A24 Optimize Query arranges a complex query into a relatively
efficient query form (tree).

A25 Execute Query actually accesses the relations and fields
to provide the results requested by the user query.t p
A26 Execute Cmd actually accesses the database tables and/or
data dictionary to modify the database system.

96

~. * . ~ ~ *~• . . . ,



0

*o Q
0 w

c - IL
ad U U 0.-

m A U.



- - .. _ ° . . . . .

Appendix C:

Requirements Analysis of the Backend DBMS
I

A-O Multi-Processor Backend Relational DBMS
AO Provide Relational DBMS Support
Al Initialize Database System
A2 Provide DBMS Functions
A21 Provide Frontend DBMS Functions
A212 Execute FE DBMS Functions
A2122 Execute Preliminary DBMS Functions
A22 Provide BCP Functions
A222 Execute BCP DBMS Functions
A2223 Add to Tak Tree
A2224 Manage QP Assignment/Release
A2225 Manage Active Query Steps
A2226 Update Task Tree
A3 Shutdown System

98

I

98°

t

....................



-- 7 7 *°

A-O Multi-Processor Backend Relational DBMS

Abstract: This is the environment node.

At this level, the Backend DBMS is seen as a Relational
Database Management System. Once the Backend is activited
(DBMS startup), it receives queries (both retrievals and
updates), new data, and commands from a network, host system,
or a CRT terminal. It responses with either an output
relation (for retrievals) or a reply message for updates and -

commands (assuming nothing went wrong).

Packets are used to facilitate communications between
processors.

99



4--

4-"

USS

C3_ It.I a

Al W

00
ma-all

DD

L.o

I ow
0 W0-L

-I , E.. .-. -

1-0 1-

1000

. . . .

: iii.
0[



.. ~~~ . . .. . .
-. <I

AO Provide Relational DBMS Support

Abstract: This shows a simple breakdown of the DBMS. It
contains startup, active, and shutdown phases.

A portion of the startup phase will be initiated by a
human operator. Once the system is up, it will provide
database management for the existing database. The DBMS
functions include relational operations (select, project,
join, product, union, difference, intersect), update
operations (insert, delete, modify), and miscellaneous
operations (min, max, count, sort, sum). The DBMS commands
provide some external control over the Backend system, and
allow the DBA to modify the database data dictionary. The
commands include: startup, shutdown, start job, stop job,
abort job, change priority, job status, and DDL commands. The
shutdown causes the system to stop accepting input, but
should allow current queries to complete successfully.

Al Initialize Database System entails all necessary steps
needed to bring the DBMS up as a functioning unit (i.e.
supply power, load OS, initialize system tables, etc.). p

A2 Provide DBMS Functions contains the necessary DBMS
functions needed to allow queries and commands to be levied
against the existing DB.

L A3 Shutdown System provides a safe, orderly method of
terminating the operations of the DBMS.

*- ..

L

101

L

. . .. . . . . . . . . . . . .

,. * * .. . .



xp

I .CA

a -,:

(1 w-

0

0

I r c-

ozw u 0

01--0
*Z R,

CAL

10



Al Initialize Database System

Abstract: Entails all necessary steps needed to bring the
DBMS up as a functioning unit (i.e. supply power, load OS,
initialize system tables, etc.).

*. A large portion of the system startup may entail human
intervention to power up the system and manually load the
Operating Systems.

All Startup Frontend causes the frontend to be booted with
the FE Operating System.

A12 Init Frontend causes the FE to initialize system tables
and verify that the BCP is available for use.

!
A13 Startup BCP causes the BCP to be booted with the BCP
Operating System.

A14 Init BCP causes the BCP to initialize system tables and
verify that at least one QP is available for use. Sends a
message to the FE after initialization is complete.

A15 Startup QP causes the QPs to be booted.

A16 Init QP causes the QP to initialize any internal fields
or tables. Sends a message to the BCP upon completion.

103

.L .:.-

...........................................................



Iw.-

*' C

* 
-o 

w

104



A2 Provide DBMS Functions

Abstract: Contains the necessary DBMS functions needed to
allow queries and commands to be levied against the existing
DB.

The system is decomposed along "functional" lines of the
major architecture components of the system. The frontend
receives queries and commands from the outside, places the
valid data into an optimized query tree and passes it on to S
the BCP. The BCP then decides which task in the tree to
perform in which order, and assigns one or more QPs to work on
a task. The mass storage unit (MSU) allows fast access to
the DB pages and can transfer data into and out of the
memory buffer unit (MBU) quickly. The memory buffers provide
a (hopefully common) memory space in which the QPs can -
manipulate the data stored in the system. The QPs actually
execute all the necessary relational functions against the
data stored in the memory buffers.

A21 Provides Frontend DBMS Functions is responsible for
communications between the backend system and the outside P
world. It is also responsible for most of the database
management functions not directly related to the relational
operations against the database (such as syntax checks,
security checks, transaction log, and query optimization).

A22 Provide BCP Functions is responsible for scheduling
query tasks and managing the system paging.

A23 Provide Mass Storage Functions is responsible for file
management. It provides permanent storage of the existing
database, plus temporary storage of any intermediate
relations created during a query.

A24 Provide Memory Buffer Functions provides very fast
scratch pad memory for the QPs to manipulate data.

A25 Provide QP DBMS Functions provides the relational
operations (select, project, join, product, union,
difference, intersection), update operations (insert, delete,
modify) and micellaneous operations (min, max, count, sort,
sum) that actual act on the data within the DBMS.

105

. .. * *! -- --.* . ,.* .. **.. ~~*~.



LAS ell

ir0

la d

00 0 0.

o 03

.1 0

- - l

0-

CL 2

.11 6

I106



A21 Provide Frontend Functions

Abstract: The frontend (FE) is responsible for
communications between the backend system and the outside
world. It is also responsible for most of the database
management functions not directly related to relational
operations against the database (such as syntax checks,
security checks, transaction log, and query optimization).

The FE brings request from the outside world into the
backend. It performs the preliminary data checks on the
information before passing the data to the mass store unit or
the Query/Command on to the BCP. After the BCP has answered
the query, it sends a response back to the FE telling it that
it has completed the query and where the resulting relation
is stored on file. The FE then request the MSU to send it
the output which it forwards to the outside world.

A211 Receive FE MsRs listens for incoming messages from the
host system or from other components of the Backend System.
The messages are converted into a useable form for the FE.

A212 Execute FE DBMS Functions acts on incoming messages from
the other processois. Its major functions are; to receive and
validate queries/commands from the host, manage the Data
Dictionary, pass the queries down to the BCP, and send

L replies back to the host. L

A213 Send FE Msps converts the internal system structures
into a form that can be transferred to the other processors.

107

, N '



0 0

OK

la

I-to-

I"

1 Q R 

.

ILi

OW 4 
.,6

CLC

)o

'a.J WI.-

q. d. Z L

00

n W U

.5, -,--[-

O0..

I 
t~

'-"~@. 1I. I
: :

".;r .' ." .' .' .' ." .' .' ,,-, '.,t - 0- 0.. ' ..-. ' -,.. '.,. . 'U-. ' .. ' ' ' . . . ' -,..-. ' . " - . " " - " . "" ''':' ""



A212 Execute FE DBMS Functions

Abstract: Acts on incoming messages from the other
processors. Its major functions are; to receive and validate
queries/commands from the host, manage the Data Dictionary,
pass the queries down to the BCP, and send replies back to
the host.

The FE looks at the top message in the incoming queue
and determines what action it should take. If the message is
from the host system, the FE validates the query/command. If
it was a DDL command, it modifies the Data Dictionary as
needed. If the input message was a response to a previous
query/command, then the FE builds a user reply. All messages
which must be sent to the other processors are then queued
and sent at the FE's earliest opportunity.

A2121 Determine FE Action reads the top message in the queue
and calls the correct module for that message type.

A2122 Execute Preliminary DBMS Functions receives raw input
from the host system. It checks the syntax and user access
rights, and logs the transactions. If it is a retrieval
query, it optimizes the query tree.

A2123 Manage DB Data Dic is responsible for maintaining the
database data dictionary. If the input message was a valid

lam' DDL command, it modifies the Data Dictionary as needed. - -

A2124 Build Reply receive responses from the BCP and Output
relations from the MSU and formats the data to be forwarded
to the host system.

A2125 Queue FE MsRs places any outgoing communication
messages in a queue.

109

109 -

p

........................................ .. .-................



w
z .-. ,

4z;

I -j
a0

IL 0

'I c
'4u

aa

U.

a w

x--

SL z

110



A2122 Execute Preliminary DBMS Functions

Abstract: Receives raw input from the host system. It
checks the syntax and user access rights, and logs the "
transactions. If it is a retrieval query, it optimizes the
query tree.

The frontend performs any data checks and manipulations .
that are not relational in nature. This includes the -
following four major functions, but other minor functions may
be added when their need is discovered.

A21221 Analyze Syntax checks syntax for all commands and
queries. It also verifies if the relations and/or fields
requested exist in the database.

A21222 Verify Access provides data security checks. It
verifies if the user has access rights to the relations,
fields, or commands he is attempting to access.

A21223 Log Transaction provides a transaction log of all
queries and commands (both for backup and security purposes). I

A21224 Optimize Query arranges a complex query into a
relatively efficient query form (tree).

111

. . .-..- , " .o'. ',., . -. o -. - .." .' ." .' -' .'. • . .' .*' .-" ,'. , .... ..- . .' °.' .'. .= ., .- .' . - . .•S



I..

g A

opo

q CL

v ft

4-h

a (L z

or o _ _ _ _ _ _ _

I01

o 112



A22 Provide BCP Functions

Abstract: The BCP is responsible for scheduling query tasks .

and managing the system paging. S

The BCP receives queries and commands from the FE,
and page requests from the QPs. These messages are queued
and handled one at a time by the BCP. Commands are executed
in the BCP, while queries are placed in the task tree to be
scheduled as QPs become free. Page requests from the QPs S
cause the BCP to have the MSU page data into and out of the
MBU.

A221 Receive BCP Msgs listens for incoming messages from the
frontend or the query processors.

A222 Execute BCP DBMS Functions executes BCP commands,
schedules query step to QPs, and manages the paging algorithm
of each operation.

A223 Send BCP Msas converts the BCP's internal data
structures into a form that can be transferred to the other S
processors. It sends responses to the FE, storage commands
to the MSU, and query steps and paging information to the
QPs.

113

. - o ° o

;-.*;v°"



"f- C,_I,_ _ _ _ _ _

x 0 0 

clI

ot CLj
w 

-0

w Q

11



. . . . . . . . .. -

A222 Execute BCP DBMS Functions

Abstract: Executes BCP commands, schedules query steps to
the QPs, and manages the paging algorithm of each operation.

This looks at the message at the top of the input queue
and determines what type of action should be taken. Commands
are executed by the BCP and affect only a specific job.
Certain commands (stop/abort job) may cause a preemption to
be signaled against a running query.

Incoming queries are added to the existing Task Tree
according to job priority. Whenever there is a free QP, the
BCP examines the Task Tree, File Status, and System Resources
Status to determine which Query Step should be run next. It
passes the Query Step down to the active query step module.

Page request messages from the QPs are handled by the
paging system, which supplies the next page needed to
complete the task. Upon the completion of a Query Step,
certain cleanup operations may be necessary. These include,
checking for the completion of a query, removal of the Query
Step node, and any old intermediate relations.

A2221 Determine BCP Action reads the message at the top of the
queue and takes the appropriate action.

A2222 Execute Cad allows some external job control commands L
* to affect the system job scheduler.

A2223 Add to Task Tree phases the new query into the task
tree according to its priority.

A2224 Manage QP Assignment/Release selects the next Query L-.
Step to be executed, and determines which Query Steps must be

" preempted when a job is stopped.

A2225 ManaRe Active Query Steps directs the QPs and controls
the system paging of the MBU and MSU.

A2226 Update Task Tree checks for query completion, removes
* old information, and deletes the query from the task tree.

. A2227 Queue BCP Msgs places any outgoing communication
messages in a queue.

115

- t



C.u

14 0 0 .

K0 T -

II

wO I

* 44

-0- 3

6 oAl
out2

- on. . 8

11



A2223 Add to Task Tree

Abstract: Phases the new query into the task tree according
to its priority.

A22231 Determine Priority generates a priority rating for a
query.

A22232 Join to Task Tree adds the incoming query tree into
the task tree as another branch, The query tree will be
joined at the root node based on its priority.

ILI

117

.... ....~.. ... .J- .- ,- ... *.- .. ~ ,.* ... . . . . ....-- ..-.... ..



"--o

C)

"w-'%

~~1
I 0

" I

x - "

-4-"

.4

w --

o °p
0--. Y - ".,

--

O-, I-.

* "
0 --

- *.. --* .-j
" nc C ', 118



A2224 Manage QP Assignment/Release

Abstract: Selects the next Query Step to be executed, and
determines which Query Steps must be preempted when a job is
stopped.

The system selects a leaf node of the highest priority
job. It then decides if a QP should be assigned to operate
on this node based on:

1) the number of QPs already acting against the node
2) the size of the file
3) the number of QPs available in the system
4) the number of leaf nodes in the task tree

If an additional QP is assigned to a node, then a compression
node must be created.

The other two modules are used to halt a running job.
If a job is preempted, any QSs being operated on must be
stopped. After stopping the QPs, the job is removed from the
task tree.

A22241 Select Highest Available Leaf chooses the leaf node
with the highest priority. If it is directed to reselect, it
ignores all previously selected leaves.

A22242 Determine OS Requirements decides if a QP should be
allocated to work on this query step based on system status

L (see above).

A22243 Create Compression Node adds a compression node above
a node that was split between two or more QPs.

A22244 Determine Which QS to Preempt is used to stop/abort a
job. It causes any QPs working on the terminated job to stop
after the completion of the current input page.

A22245 Trim Tree removes the query job from the task tree.

119

.- . .. .



IL a

SdL a

.-.--

a .. .

i, - . S

r Li

AIX II-I-

I 

,

2: Ii-

",o t Li

- 51
0 

.- 
u. 

~

I 
t 

I 
"

x ,

4- $- t -

I. IT

i Cin

.L1  .. . . ...

-- - .-

: . o' ° -. - . 1w o I C- .%. c ." ./ ° .% ° .%° %° % %. %. -. ' %, .% " . • - % . %o "."°," .o.".•%. 
-- 'o. % .. .' '. .' ',',. . .' . ._,'.. .. '_ '.'_ '. .; .. ' t ; " - ' ' " " '- - - c



A2225 Manage Active Query Steps

Abstract: Directs the QPs and controls the system paging of
the MBU and MSU.

Upon receiving a Query Step, it is now considered
active, and the Query Step is sent to the QP and allocated
memory space in the MBU. The paging module is then told to
load the initial input pages. Once a query step is active,
the paging module will handle any additional page requests
required by the QP. Upon paging out the last output page of
a Query Step, that step is completed. The QP is cleared and
marked free.

If a preempt QS is sent to the paging module, it stops
suppling input pages to the QP.

A22251 Allocate Buffer Space determines how much buffer
spaces is needed (and available) by the Query Step. It then
forwards the Query Step down to the QP, and causes the paging
system to load the initial pages of the relation.

A22252 Manage PaRinR handles the system paging algorithms.

A22253 Clear QP cleans up the QP and prepares it to receive
a new Query Step.

i --

I -..

-. -o



OX 
G

w

-c 0

I- - 0

ca ci

%e a

a'a.

01 if

0- 1 0 3a

0. 0

12



A2226 Update Task Tree

Abstract: Checks for query completion, removes old informa-
tion, and deletes the query from the task tree.

Upon the completion of a QS, it removes the QS from the
task tree, removes any old intermediate relations, and checks
for the completion of the query.

A22261 Remove From Task Tree removes the QS from the Task
tree.

A22262 Determine Query Completion Status decides if the
query is completed. If so, it tells the frontend the
location of any answer relation.

A22263 Remove Old Intermediate Relations causes the MSU to
delete any old temporary relation(s) used by this query step.

iL-

123

IQ



00

0 6.

oo-

-0 T

IK -

Ct o124



A3 Shutdown

Abstract: Provides a safe, orderly method of terminating the
operations of the DBMS.

When the shutdown command is received, the FE is locked
to prevent other queries from entering the system. Any
existing queries in the system will run to completion
(exception; stopped jobs will be killed). Once all queries
have completed, all permanent data is saved, and a shutdown
reply is sent.

A31 Lockout New Queries causes the frontend to stop
listening for queries.

A32 Save Permanent Data causes any permanent files to be
sent to the mass storage unit.

A33 Send Shutdown Reply MsRs informs the users that we are
closed.

125

- r e - - . . '-. .



x 0

a-

I.)

I-

0 0

aC cu
- 'I

ca

ZI-.L

CI z ei

.x126



Data Dictionary for the

Date Elements

127



NAME: BCP Cmd
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A user command to modify the status of a

Query.
DATA TYPE: BCP Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd

Queue of Incoming BCP Msg
COMPOSITION:
ALIASES:
SOURCES: Execute Preliminary DBMS Functions (A212-2)

Determine BCP Action (A222-1)
DESTINATIONS: Execute BCP Cmd (A222-2)

Queue FE Msgs (A212-5)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: BCP Cmd Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of a BCP command being passed from the FE

to the BCP.
DATA TYPE: BCP Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between FE and BCP
COMPOSITION:
ALIASES:
SOURCES: Provide Frontend DBMS Functions (A2-1)

Send FE Msgs (A21-3)
DESTINATIONS: Provide BCP Functions (A2-2)

Receive BCP Msgs (A22-1)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0

DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

128

'- .._'."...-."-.,..-...-....-.. '..-."..-..-..-.......'......-.-.'.,.............'.................'............. -.',..."...



NAME: BCP Init Pkt
TYPE: Data Element S
PROJECT: BCP
DESCRIPTION: An initialization packet sent from the FE to

the BCP to determine if the BCP is active.
DATA TYPE: BCP control command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between FE and BCP
COMPOSITION:
ALIASES:
SOURCES: Init Frontend (A1-2)
DESTINATIONS: Init BCP (AI-4)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: BCP Status Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control packet passed from the BCP to the

FE to indicate that the BCP is active.
" DATA TYPE:

MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between FE and BCP
COMPOSITION:
ALIASES:
SOURCES: Init BCP (A1-4)
DESTINATIONS: Init Frontend (AI-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

129
-.

. - . ..'. ,' ' o' -' '. -- - . ° . ' -' . - 4~ . X. . u' - - ' -. , . a.. a.' - . ,. : • . - .. " .% ' . . ° ,. . ' . .. . '~ .. &-. ° t" -, ,' .-



NAME: BCP Startup
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Startup control to power up and initialize the -.-

backend control processor,
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Startup DBMS
COMPOSITION:
ALIASES:
SOURCES: Human Intervention (Al Cl)
DESTINATIONS: Startup BCP (Al-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Buffer Address
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Memory page address in the MBU.
DATA TYPE: pointer
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Provide Mass Store Functions (A2-3)

Provide QP DBMS Functions (A2-5)
DESTINATIONS: Provide Memory Buffer Functions (A2-4)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

L

130

- -- . . ... - -... . . ... . . .. -. .-. . -o . ..- .. '. , .- -. o-



NAME: Cmd
TYPE: Data Element *
PROJECT: BCP
DESCRIPTION: A complete backend command send from host system.
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs
COMPOSITION: DDL Cmd

BCP Cmd
ALIASES: Raw Cmd, Correct Cmd, Legal Cmd
SOURCES: .
DESTINATIONS:
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Cmd Pkt
TYPE: Data Element -
PROJECT: BCP
DESCRIPTION: Part of a backend command being passed from

host to backend.
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Communication Packet between Host and Backend

DDL Cmd
BCP Cmd

ALIASES:
SOURCES: Outside of Backend Environment (A-O)
DESTINATIONS: Provide Relational DBMS Support (A-O)

Provide DBMS Functions (AO-2)
Provide Frontend DBMS Functions (A2-1)
Receive FE Msgs (A21-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

131

...........................................

,' . ''. '.""."'."'.'. "." "-'-9 "." "."- '.'." "-'-' - .'"-* - " .- .-."' ". "-'" "-'"- "-""- ".'- * """'' "- ". "'-""'. -' < -- : -:""-



NAME: Correct Cmd
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A syntactically correct backend command
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
COMPOSITION: DDL Cmd

BCP Cmd
ALIASES:
SOURCES: Analyse Syntax (A2122-1)
DESTINATIONS: Verify Access (A2122-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Correct Data
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A syntactically correct data file
DATA TYPE: Input File
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Data
COMPOSITION:
ALIASES:
SOURCES: Analyse Syntax (A2122-1)
DESTINATIONS: Verify Access (A2122-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

132

.. . . . .. . . . *~~.. **% **]**
. . . . . . . . . . . .. . . . . . . . . . . . .... ... .. * . . . . . . . . . .



NAME: Correct Query
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A syntactically correct query string
DATA TYPE: ASCII Query String
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Query
COMPOSITION:
ALIASES:
SOURCES: Analyse Syntax (A2122-1)
DESTINATIONS: Verify Access (A2122-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff p

NAME: Data
I TYPE: Data Element

PROJECT: BCP
DESCRIPTION: Complete data input file send from host system.
DATA TYPE: Input File
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs
COMPOSITION:
ALIASES: Raw Data, Correct Data, Legal Data
SOURCES:
DESTINATIONS:
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

133

* . *.* . . . . *. . . . . . . . . . . . . . . . * . . . . . . *

. . . . .. ... . .. * * * . . *.°* ~ *. ** . . . . . . . . . .



NAME: Data Dic
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Data Dictionary which defines all the domains

and relations in the DB.
DATA TYPE: Data Dictionary
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs
COMPOSITION:
ALIASES:
SOURCES: Manage DB Data Dic (A212-3)

Determine FE Action (A212-1)
DESTINATIONS: Manage DB Data Dic (A212-3)

Execute Preliminary DBMS Functions (A212-2)
Verify Access (A2122-2)
Optimize Query (A2122-4)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Data Dic Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of the data dictionary being passed

between MSU and the FE.
DATA TYPE: Data Dictionary
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between MSU and the FE
COMPOSITION:
ALIASES:
SOURCES: Provide Frontend Functions (A2-1)

Provide Mass Storage Functions (A2-3)
DESTINATIONS: Provide Frontend DBMS Functions (A2-1)

Provide Mass Storage Functions (A2-3)
Receive FE Msgs (A21-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
P DATE: 11/16/84

AUTHOR: Capt Dale M. Pontiff

134

......... ...... .....,........ ...................... .I.. ...~.' . . ........... °. .•... - ......... °. ... '



NAME: Data Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of a input data file (of new tuples)

being passed from host to backend.
DATA TYPE: Tuple data
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Communication Packet between Host and Backend

S it " FE and MSU
ALIASES:

SOURCES: Outside of Backend Environment (A-O)
Provide Frontend DBMS Function (A2-1)
Provide Mass Store Functions (A2-3)

DESTINATIONS: Provide Relational DBMS Support (A-O)
Provide DBMS Functions (AO-2)
Provide Frontend DBMS Functions (A2-1)
Provide Mass Store Functions (A2-3)
Receive FE Msgs (A21-1)

RELATED REQUIREMENT NUMBER:

I VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

1

I

135- ,



NAME: DB Page Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of a data page being passed between the

MBU and a QP or the MSU.
DATA TYPE: Relational Data Page
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between MBU and QP or

MSU.
COMPOSITION:
ALIASES:
SOURCES: Provide QP DBMS Functions (A2-5)

Provide Memory Buffer Functions (A2-4)
Provide Mass Storage Functions (A2-3)

DESTINATIONS: Provide QP DBMS Functions (A2-5)
Provide Memory Buffer Functions (A2-4)
Provide Mass Storage Functions (A2-3)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84

I AUTHOR: Capt Dale M. Pontiff

* ********************************************************--:

NAME: DB saved
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable indicating that the

database has been saved on disk.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Save Permanent Data (A3-2)
DESTINATIONS: Send Shutdown Reply (A3-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

136

I -. -.:. -.-. -. : ... ... ..-. ..: .... .;. .: .. .- : ..:. :.. .,. .... .... .: ..:.: .: .- ..:.: . .: .. .... . ..-.- . .. :



* . .. .-C -- -- . . . . .. - , --" ..

NAME: DDL Cmd
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A DBA command to modify the Data Dictionary.
DATA TYPE: Data Definition Language Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
COMPOSITION:
ALIASES:
SOURCES: Execute Preliminary DBMS Functions (A212-2) 0

Verify Access (A212-2)
DESTINATIONS: Manage DB Data Dictionary (A212-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: DDL Reply
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Reply message for DDL commands.
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE: I
VALUES:
PART OF: Reply
COMPOSITION:
ALIASES:
SOURCES: Manage DB Data Dic (A212-3)
DESTINATIONS: Queue FE Msgs (A212-5)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

137

.

..................... .... ... .... .. .!



/*******************************************************/

NAME: FE Locked
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable to indicate that the FE

will not except new queries.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE: 5
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Lockout New Queries (A3-1) S
DESTINATIONS: Save Permanent Data (A3-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: File Status
TYPE: Data Element
PROJECT: BCP P
DESCRIPTION: Status of relation files to be accessed.
DATA TYPE: File Status
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALIASES:
SOURCES: BCP Tabl""
DESTINATIONS: Manage QP Assignment/Release (A222-4)

Determine QP Assignment (A2224-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

1

S

13 8--- "'

S



NAME: Free QP
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable indicating that there is an

idle QP.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Clear QP (A2225-3)

Manage Active Query Steps (A222-5)
DESTINATIONS: Manage QP Assignment/Release (A222-4)

Select Highest Available Leaf (A2224-1)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Frontend Startup
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Startup control to power up and initialize the

frontend.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Startup DBMS
COMPOSITION:
ALIASES:
SOURCES: Human Intervention (Al Cl)

* DESTINATIONS: Startup Frontend (Al-I)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

139

. .- '. °.O..........-..... .°. .... . ... ... '. . ..........



I

NAME: Init BCP
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable to boot the backend control

processor.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Startup BCP (Al-3)
DESTINATIONS: Init BCP (Al-4)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Init FE
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable to boot the frontend processor.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Startup Frontend (Al-I)
DESTINATIONS: Init Frontend (AI-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

140

S. .. . .... . . . . . . . . .. .



NAME: Init QP
TYPE: Data Element

PROJECT: BCP
DESCRIPTION: A control variable to boot the query processors.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Startup QP (A1-5)
DESTINATIONS: Init QP (A1-6)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff 0

NAME: Leaf Count
TYPE: Data Element P
PROJECT: BCP
DESCRIPTION: Number of bottom-most leaves in the Task Tree.
DATA TYPE: Integer
MIN VALUE:
MAX VALUE:
RANGE: whole numbers
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Select Highest Available Leaf (A2224-1)
DESTINATIONS: Determine QP Assignment (A2224-2) S
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

141
*. . . .--- *.-.-... .•

* * . ***.*. * * -. .•** * ,



NAME: Legal BCP Cmd
TYPE: Data Element P
PROJECT: BCP
DESCRIPTION: A valid command to the BCP with proper user

access.
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
COMPOSITION:
ALIASES:
SOURCES: Verfiy Access (A2122-2)

Execute Preliminary DBMS Functions (A212-2)
DESTINATIONS: Queue FE Msgs (A212-5)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Legal Cmd
TYPE: Data Element

" PROJECT: BCP
DESCRIPTION: A valid backend command with proper user access.

* DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
COMPOSITION: DDL Cmd

BCP Cmd
ALIASES:
SOURCES: Verfiy Access (A2122-2)
DESTINATIONS: Log Transaction (A2122-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

142

D-'.. .N.--"-"-a... ... ......... .-•• . . -. -.. . . . ..... , - . :. . . .:- * *-*: : . .; 5 i



NAME: Legal Data
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A valid input data file with proper user access.
DATA TYPE: Input File
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Data

Queue of Outgoing FE Msgs
COMPOSITION:
ALIASES: S
SOURCES: Verfiy Access (A2122-2)

Execute Preliminary DBMS Functions (A212-2)
DESTINATIONS: Queue FE Msgs (A212-5)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Legal DDL Cmd
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A valid Data Definition Command with proper user

access.
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
COMPOSITION: 3
ALIASES:
SOURCES: Verfiy Access (A2122-2)

Execute Preliminary DBMS Functions (A212-2)
DESTINATIONS: Manage DB Data Dic (A212-3)
RELATED REQUIREMENT NUMBER: I
VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

143
3

..............................................
.. .J .," ","."-" - .' . -:' " '- - - '---,'.-. '.-. ' .-..'''..'.." ''''-. ".? - ', ''-..'-.".,.. .? ?? ,L ' ' -"



/7

" NAME: Legal Query
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A valid Query with proper user access.
DATA TYPE: ASCII Query String
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Query
COMPOSITION:
ALIASES:
SOURCES: Verfiy Access (A2122-2)
DESTINATIONS: Log Transaction (A2122-3)

Optimize Query (A2122-4)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

* ******************************************************* /

NAME: Load Init Pages
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Structure tells the paging system what types

of pages are need during the initial load and
where to load the pages in the MBU.

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Allocate Buffer Space (A2225-1)
DESTINATIONS: Manage Paging (A2225-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

144

,

* . .. ' . . . . . .. . . . .



NAME: Multiple QPs
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable used to determine if more

than one QP has been assigned to a Query Step.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Determine QP Assignment (A2224-2)
DESTINATIONS: Create Compression Node (A2224-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Optimized Query
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A Query stored in an optimized query tree.
DATA TYPE: Query Tree
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

* PART OF: Queue of Outgoing FE Msgs
COMPOSITION:
ALIASES: Query Tree
SOURCES: Optimized Query (A2122-4)

Execute Preliminary DBMS Functions (A212-2)
Determine BCP Action (A222-1)

DESTINATIONS: Queue FE Msgs (A212-5)
Add to Task Tree (A222-3)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
*DATE: 11/16/84
*AUTHOR: Capt Dale M. Pontiff

145



NAME: Optimized Query Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of an optimized query tree being passed

from the FE to the BCP.
DATA TYPE: Comm Packet
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between FE and BCP
COMPOSITION:
ALIASES:
SOURCES: Provide Frontend DBMS Functions (A2-1)

Send FE Msgs (A21-3)
DESTINATIONS: Provide BCP Functions (A2-2)

Receive BCP Msgs (A22-1)
RELATED REQUIREMENT NUMBER:

p
VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Output
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A complete output relations for a retrieval

Query from the MSU.
DATA TYPE: Output Relation (file)
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs

Queue of Outgoing BCP Msgs
COMPOSITION:
ALIASES:
SOURCES: Determine FE Action (A212-1)

Build Reply (A212-4)
DESTINATIONS: Queue FE Msgs (A212-5)

Build Reply (A212-4)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84

- AUTHOR: Capt Dale M. Pontiff

146.. .



NAME: Output Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of a output relation being passed between

processors.
DATA TYPE: Output Relation
MIN VALUE:
MAX VALUE:
RANGE:

* VALUES:
PART OF:
COMPOSITION: Communication Packet between Host and Backend
ALIASES:
SOURCES: Provide Relational DBMS Support (A-O)

Provide DBMS Functions (AO-2)
Provide Frontend DBMS Functions (A2-1)
Provide Mass Store Functions (A2-3)
Send FE Msgs (A21-3)

DESTINATIONS: Provide Frontend DBMS Functions (A2-1)
Receive FE Msgs (A21-1)
Outside of Backend Environment (A-0)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
i, DATE: 11/16/84

AUTHOR: Capt Dale M. Pontiff

147

* .. . . . . . . . .. . . . . . ~... . .;*. . . . o

- .- -- ~*'-*~*.J~j~ - -. ' ~ *.-~-. -* ~ A
2

Ao -.



*~~~~~~~~~ -"7 - --- -~ - ------. * .---- - -

NAME: Page Request
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A page request from a QP.
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Queue of Incoming BCP Msgs
ALIASES:
SOURCES: Determine BCP Action (A222-1)
DESTINATIONS: Manage Active Query Step (A222-5)

Manage Paging (A2225-2)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Page Request Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of a page request message being passed

from a QP to the BCP.
DATA TYPE: Paging control data
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between BCP and QP
COMPOSITION:
ALIASES:
SOURCES: Provide QP DBMS Functions (A2-5)
DESTINATIONS: Provide BCP Functions (A2-2)

Receive BCP Msgs (A22-1)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

I

148

... ..... .
.. .. .... . . .. . . . . . . . . . . . .. . . . . . . . . . . .**"*'" "'" ' % *"" %"" **' "'"" " " "'"" **''" ". "'" " ""'-" "' "'."." "'."....."'...'" ''"



NAME: Paging Info
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Structure used to tell the QPs which pages of

the MBU to access and what is stored in each
page.

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Manage Active Query Steps (A222-5)

Manage Paging (A2225-2)
DESTINATIONS: Queue BCP Msgs (A222-7)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0

DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Paging Info Pkt

TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of a paging message being passed from the

BCP to a QP.
DATA TYPE: Paging control data
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between BCP and QP
COMPOSITION:
ALIASES:
SOURCES: Provide BCP Functions (A2-2)

Send BCP Msgs (A22-3)
DESTINATIONS: Provide QP DBMS Functions (A2-5)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

149

.~~~~ ~ ~ .°' .. . . . .

I "°'"

.... " .I I I II I i Il I i I! I . II I I II 1 i -------------------- 1-------------------------------------------- I
I* i. I *. *

t
. I.*

i
.



5

/*******************************************************/*

NAME: Preempt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable to cause a Query to be

preempted.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Execute Cmd (A222-2)
DESTINATIONS: Determine Which Query Steps To Preempt

(A2224-4)
Manage QP Assignment/Release (A222-4)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

IL- NAME: Preempt QS
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable to cause a Query Step to be

preempted (stop any new paging).
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Determine Which Query Steps To Preemmpt

(A2224-4)
Manage QP Assignment/Release (A222-4)

DESTINATIONS: Manage Active Query Steps (A222-5)
Manage Paging (A2225-2)
Clear QP (A2225-3)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

150

- S -. .- *--o-



NAME: Priority
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A priority value to determine the order in

which query steps are executed.
DATA TYPE: Integer
MIN VALUE: 0 (high priority) 0
MAX VALUE: 255 (low priority)
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Determine Priority (A2223-1)
DESTINATIONS: Join to Task Tree (A2223-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: QP Init Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: An initialization packet sent from the BCP to

the QPs to determine which QPs are active.
DATA TYPE:
MIN VALUE: .
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between BCP and QP
COMPOSITION:
ALIASES:
SOURCES: Init BCP (A1-4)
DESTINATIONS: Init QP (AI-6)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

151

P

- . . . . . . . . . . . . . . ... ? .-

. . . . . . . . . . . ... |

S. . ... . ._- ~ -- _...~A .~A~ - . ~ ~ ~ A .5 * .-. ~



NAME: QP Startup
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Startup control to power up and initialize the

query processors.
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Startup DBMS
COMPOSITION:
ALIASES: S
SOURCES: Human Intervention (Al - Cl)
DESTINATIONS: Startup QP (Al-5)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84 S
AUTHOR: Capt Dale M. Pontiff

NAME: QP Status Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control packet passed from the QPs to the

BCP to indicate which QPs are active.
DATA TYPE:
MIN VALUE:

RANGE:

VALUES:
PART OF: Communication Packet between BCP and QP
COMPOSITION:
ALIASES:
SOURCES: Init QP (A1-6) 5
DESTINATIONS: Init BCP (A1-4)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

152

-> . i2 i.i'152

1 5 ' i'. i S



/*******************************************************/*

NAME: QP Stopped
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable indicating the a QP has

stopped execution of a query step.
DATA TYPE: Control Variable.
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Clear QP (A2225-3)

Manage Active Query Steps (A222-5)
DESTINATIONS: Manage QP Assignment/Release (A222-4)

Trim Branch (A2224-5)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: QS Complete
TYPE: Data Element . -

PROJECT: BCP
DESCRIPTION: A control variable indicating that a

Query Step has completed.
DATA TYPE: Control Variable
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Manage Paging (A2225-2)

Manage Active Query Steps (A222-5)
DESTINATIONS: Update Task Tree (A222-6)

Clear QP (A2225-3)
Remove Old Intermediate Relations (A2226-3)
Remove from Task Tree (A2226-2)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

153

* . a



NAME: Query
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Complete ASCII query string send from host system.
DATA TYPE: Query String

* MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs
COMPOSITION:
ALIASES: Raw Query, Correct Query, Legal Query
SOURCES:
DESTINATIONS:
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Query Pkt
i TYPE: Data Element

PROJECT: BCP
DESCRIPTION: Part of a Query being passed from the

Host System to the Backend System
DATA TYPE: ASCII String
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between Host and Backend

* COMPOSITION:
ALIASES:
SOURCES: Outside of Backend Environment (A-O)
DESTINATIONS: Provide Relational DBMS Support (A-O)

Provide DBMS Functions (AO-2)
Provide Frontend DBMS Functions (A2-1)
Receive FE Msgs (A21-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
. DATE: 11/16/84

AUTHOR: Capt Dale M. Pontiff

154

. -. . ., . . .. . . . . . . . . . . . . . . . .



* NAME: Query Status

TYPE: Data Element
" PROJECT: BCP
- DESCRIPTION: Status of a Query Step

DATA TYPE: Query Status
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Manage QP Assignment/Release (A222-4)

Manage Active Query Steps (A222-5)
Determine QP Assignment (A2224-2)
Manage Paging (A2225-2)

DESTINATIONS: Manage QP Assignment/Release (A222-4)
Manage Active Query Steps (A222-5)
Determine QP Assignment (A2224-2)
Manage Paging (A2225-2)
Determine Which Query Steps to Preempt

(A2224-4)
RELATED REQUIREMENT NUMBER:

.0 VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

155



NAME: Query Step
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A single relational operations to be performed

on one or two relational files.
DATA TYPE: Query Step
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Select Highest Available Leaf (A2224-1) .

Manage QP Assignment/Release (A222-4)
Manage Active Query Steps (A222-5)
Allocate Buffer Space (A2225-1)
Determine QP Assignment (A2224-3)

DESTINATIONS: Queue BCP Msgs (A222-7)
Manage Active Query Steps (A222-5)
Allocate Buffer Space (A2225-1)
Determine QP Assignment (A2224-3)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0

DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

156
.... .... . .. . . ****% **. .... . . . . . . . . . . .

. . . . .. .. . . . . .



NAME: Query Step Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of a query step being passed from the BCP

to a QP.
DATA TYPE: Query Step (operation)
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between BCP and QP
COMPOSITION:
ALIASES:
SOURCES: Provide BC? Functions (A2-2)

Send BCP Msgs (A22-3)
DESTINATIONS: Provide QP DBMS Functions (A2-5)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

I LNAME: Query Tree
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: An Optimized Query rebuilt within the BCP.
DATA TYPE: Query Tree
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Task Tree
COMPOSITION: Query Header

Query Step
ALIASES: Optimized Query
SOURCES: Execute Cmd (A222-2)

Determine BCP Action (A222-1)
DESTINATIONS: Add to Task Tree (A222-3)

Determine Priority (A2223-1)
Join to Task Tree (A2223-2)

RELATED REQUIREMENT NUMBER: .

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

157

DATATYPE .ur Tre .'-..o
*IN VALU : *.*



NAME: Queue of Incoming BCP Msgs
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A queue of message received by the BCP for

processing.
DATA TYPE: Queue
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Optimized Query

BCP Cmd
Page Request

ALIASES:
SOURCES: Receive BCP Msgs (A22-1)
DESTINATIONS: Execute BCP BDMS Functions (A22-2)

Determine BCP Action (A222-1)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

158

• . .-



NAME: Queue of Incoming FE Msgs
TYPE: Data Element
PROJECT: BCP

*DESCRIPTION: A queue of message received by the FE for
processing.

DATA TYPE: Queue
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Query

Cmd
Data
Response
Data Dic
Output

* ALIASES:
SOURCES: Receive FE Msgs (A21-1)
DESTINATIONS: Execute FE DBMS Functions (A21-2)

Determine FE Action (A212-1)
* RELATED REQUIREMENT NUMBER:

*VERSION: 1.0

i LDATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

159

. .~ . . . . . . . . 2 . . . . . - . .* . - .- * .- ,. -.-.



• . -...-..

NAME: Queue of Outgoing BCP Msgs
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A queue of message the BCP must send to other

processors (FE, MSU, QP).
DATA TYPE: Queue
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Response

Storage Cmd
Query Step
Paging Info

ALIASES:
SOURCES: Queue BCP Msgs (A222-7)

Execute BCP DBMS Functions (A22-2)
DESTINATIONS: Send BCP Msgs (A22-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

160

................ . . ............



NAME: Queue of Outgoing FE Msgs
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A queue of message the FE must send to other

processors (host, BCP, MSU).
DATA TYPE: Queue
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Optimized Query

BCP Cmd
Valid Data
Storage Cmd
Reply
Output

ALIASES:
SOURCES: Queue FE Msgs (A212-5)

Execute FE DBMS Function (A21-2)
DESTINATIONS: Send FE Msgs (A21-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
9 DATE: 11/16/84

AUTHOR: Capt Dale M. Pontiff

161

............................-. -

. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . . . . . . . . . . . ..'.,.-

~. fl~k ~ a .-



NAME: Raw Cmd
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A complete backend command sent from host system.
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs
COMPOSITION: DDL Cmd

BCP Cmd
ALIASES:
SOURCES: Receive FE Msgs (A21-1)
DESTINATIONS: Execute FE DBMS Functions (A21-2)

Execute Preliminary DBMS Functions (A212-2)
Analyze Syntax (A2122-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Raw Data
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Complete data input file sent from host system.
DATA TYPE: Input File
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs
COMPOSITION:
ALIASES:
SOURCES: Receive FE Msgs (A21-1)
DESTINATIONS: Execute FE DBMS Functions (A21-2)

Execute Preliminary DBMS Functions (A212-2)
Analyze Syntax (A2122-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

162

~~~~~~~... .....>. ........................ .... . ...... .,_, . . ,... . -.. ,: . '- , . . ._, .. . . i


NAME: Raw Query ...
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Complete ASCII query string sent from host system.
DATA TYPE: Query String
MIN VALUE: -"-

MAX VALUE:
RANGE: 0
VALUES:
PART OF: Queue of Incoming FE Msgs
COMPOSITION:
ALIASES:
SOURCES: Receive FE Msgs (A21-1)
DESTINATIONS: Execute FE DBMS Functions (A21-2)

Execute Preliminary DBMS Functions (A212-2)
Analyze Syntax (A2122-2)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Reply
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A reply message from the backend to the host.
DATA TYPE: Reply
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Outgoing FE Msgs
COMPOSITION: DDL Reply

Shutdown Reply
ALIASES: S
SOURCES: Build Reply (A212-4)
DESTINATIONS: Queue FE Msgs (A212-5)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84 '
AUTHOR: Capt Dale M. Pontiff

163
*

NAME: Reply Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of a output reply being passed from

backend to host system.
DATA TYPE: Reply to Backend Command or Update Query
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Communication Packet between Host and Backend
ALIASES:
SOURCES: Provide Relational DBMS Support (AO)

Provide DBMS Functions (AO-2)
Provide Frontend DBMS Functions (A2-1)
Send FE Msgs (A21-3)

DESTINATIONS: Outside of Backend Environment (AO)
RELATED REQUIREMENT NUMBER:

pi

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Resource Status
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Status of QPs.
DATA TYPE: QP Status
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS: Determine QP Assignment (A2224-2)

Manage QP Assignment/Release (A222-4)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

164

'I

NAME: Response
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A complete response message concerning a Query

or BCP Cmd from the BCP.
DATA TYPE: Response
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs

Queue of Outgoing BCP Msgs
COMPOSITION:
ALIASES: 0
SOURCES: Determine Query Completion Status (A2226-2)

Update Task Tree (A222-6)
Determine FE Action (A212-1)

DESTINATIONS: Queue BCP Msg (A222-7)
Build Reply (A212-4)

RELATED REQUIREMENT NUMBER: •

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Response Pkt
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Part of a response passed between the BCP and

FE.
DATA TYPE: Response
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Communication Packet between BCP and FE.
ALIASES:
SOURCES: Provide BCP Functions (A2-2)

Send BCP Msgs (A22-3)
DESTINATIONS: Provide FE DBMS Functions (A2-1)

Receive FE Msgs (A21-1)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

165

.., . ., ,....? ,.. .. . _,_ _ _, ., ,. >_ , : 2: '-

5

NAME: Shutdown Cmd
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A command from the host telling the backend to

begin shutting down.
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
COMPOSITION:
ALIASES:
SOURCES: Outside of Backend Environment (AO - II)
DESTINATIONS: Shutdown System (AO-3)

Lockout New Queries (A3-1)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

NAME: Shutdown Reply
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A reply from the backend informing the host

that the backend is idle after receiving a
shutdown command.

DATA TYPE: Reply
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Reply
COMPOSITION:
ALIASES:
SOURCES: Shutdown System (AO-3)

Send Shutdown Reply (A3-3)
DESTINATIONS: Outside of Backend Environment (AO - 01)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

166

... .- *.

.

NAME: Startup DBMS
TYPE: Data Element
PROJECT: BCP I
DESCRIPTION: Startup the backend relational DBMS.

(Manual)
DATA TYPE: Human
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Frontend Startup

BCP Startup
QP StartupALIASES:

SOURCES: Outside of Backend Environment (AO)
DESTINATIONS: Provide Relational DBMS Support (AO)

Initialize Database System (AO-1)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0 I
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

167

D

NAME: Storage Cmd
TYPE: Data Element S
PROJECT: BCP
DESCRIPTION: A command to the MSU to create, delete or

access a data file.
DATA TYPE: MSU Cmd
MIN VALUE:
MAX VALUE: 5
RANGE:
VALUES:
PART OF: Queue of Outgoing FE Msgs
COMPOSITION:
ALIASES:
SOURCES: Verify Access (A2122-2) 5

Execute Preliminary DBMS Functions (A212-2)
Manage DB Data Dic (A212-3)
Build Reply (A212-4)
Remove Old Intermediate Relations (A2226-3)
Update Task Tree (A222-6)
Manage Paging (A2225-3)
Manage Active Query Steps (A222-5)

DESTINATIONS: Queue FE Msgs (A212-5)
Quee BCP Msgs (A222-7)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

16.

S

• S :

168

NAME: Storage Cmd Pkt
TYPE: Data Element S
PROJECT: BCP
DESCRIPTION: Part of a MSU command being passed from the

FE or BCP to the MSU.
DATA TYPE: Mass Storage Command
MIN VALUE:
MAX VALUE: S
RANGE:
VALUES:
PART OF: Communication Packet between the FE or BCP

to the MSU
COMPOSITION:
ALIASES:
SOURCES: Provide Frontend DBMS Functions (A2-1)

Send FE Msgs (A21-3)
Provide BCP Functions (A2-2)
Send BCP Msgs (A22-3)

DESTINATIONS: Provide Mass Store Functions (A2-3)
RELATED REQUIREMENT NUMBER: 0

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

169

I _.

- - '-'-- fl~ r rr r r"

S

NAME: System Idle
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable indicating that the backend

is currently idle.
DATA TYPE: Control Flag
MIN VALUE:
MAX VALUE: S
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Provide DBMS Functions (AO-2)

Provide BCP Functions (A2-2)
Execute BCP DBMS Functions (A22-2)
Update Task Tree (A222-6)
Remove from Task Tree (A2226-1)

DESTINATIONS: Shutdown System (AO-3)
Save Permanent Data (A3-2) j

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

p

170

S

NAME: System Ready
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A control variable indicating that the backend

has been initialized.
DATA TYPE: Control Flag
MIN VALUE:
MAX VALUE:
RANGE: On -- > System Ready;

Off -- > System is inoperative
VALUES:
PART OF:
COMPOSITION:
ALIASES:
SOURCES: Initialize Database System (AO-1)

Init Frontend (A1-2)
DESTINATIONS: Provide DBMS Functions (AO-2)

Provide Frontend DBMS Functions (A2-1)
Receive FE Msgs (A21-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0

DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

171

2- . .- ,2'"

.-.

NAME: Task Tree
TYPE: Data ElementPROJECT: BCP

DESCRIPTION: A colection of active Query Trees within the BCP.
DATA TYPE: Task Tree
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Query Tree
ALIASES:
SOURCES: Add to Task Tree (A222-3)

Update Task Tree (A222-6)
Remove from Task Tree (A2226-1)
Trim Branch (A2224-3)
Create Compression Node (A2224-5)
Manage QP Assignment/Release (A222-4)
Join to Task Tree (A2223-2)

DESTINATIONS: Add to Task Tree (A222-3)
Update Task Tree (A222-6)
Remove from Task Tree (A2226-1)
Trim Branch (A2224-3)
Create Compression Node (A2224-5)
Manage QP Assignment/Release (A222-4)
Join to Task Tree (A2223-2)
Select Highest Available Leaf (A2224-1)

* RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84 m
AUTHOR: Capt Dale M. Pontiff

. .-: ..-.. .~172

-....- a.t.. c,. ,, . . . -. -. ., - - .- .- ,- - - - - - - .'.. .''.'.. .,.'..t,,'-5 - ' , ,- .. .- ,' e ":

NAME: Trimmed Branch -- -

TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A Query Tree which has been removed from the

Task Tree.
DATA TYPE: Query Tree
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION:
ALIASES: (
SOURCES: Manage QP Assignment/Release (A222-4)

Trim Branch (A2224-5)
DESTINATIONS: Execute Cmd (A222-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0 .
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

I..

173

L'.z

I

Data Dictionary for the
S

Activity Boxes

I

I

p

L

p

S

I
I

.4

174

* ~ . .S* .

NAME: Add to Task Tree -..

TYPE: Activity .
PROJECT: BCP
NUMBER: A2223
DESCRIPTION: Phase the new query into the task tree

according to its priority.
INPUTS: 01, Task Tree
OUTPUTS: 01, Task Tree
CONTROLS: Cl, Query Tree (Optimized Query)
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A222, Execute BCP DBMS Functions

RELATED REQUIREMENT NUMBER: 5

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Allocate Buffer Space
TYPE: Activity
PROJECT: BCP
NUMBER: A22251
DESCRIPTION: Determines how much buffer spaces is needed

(and available) by the Query Step. It then
forwards the Query Step down to the QP, and
causes the paging system to load the initial
pages of the relation. p

INPUTS:
OUTPUTS: 01, Query Step

02, Load Init Pages
CONTROLS: Cl, Query Step
MECHANISMS:
ALIASES: 5
PARENT ACTIVITY: A2225, Manage Active Query Steps
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff P

175
I-2

NAME: Analyze Syntax
TYPE: Activity
PROJECT: BCP
NUMBER: A21221
DESCRIPTION: Checks syntax for all commands and queries.

It also verifies if the relations and/or
fields requested exist in the database.

INPUTS:
OUTPUTS: 01, Correct Query, Data or Cmd
CONTROLS: Cl, Raw Query, Data, or Cmd
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2122, Execute Preliminary DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

--. NAME: Build Reply
TYPE: Activity
PROJECT: BCP
NUMBER: A2124
DESCRIPTION: Receives responses from the BCP and Output

relations from the MSU and formats the data to I"
INPUTS: be forwarded to the host system.INPUTS: "

OUTPUTS: 01, Output, Reply and/or Storage Cmd
CONTROLS: Cl, Response or Output
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A212, Execute FE DBMS Functions

RELATED REQUIREMENT NUMBER:

-. . VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

176

7. 7

NAME: Clear QP
TYPE: Activity
PROJECT: BCP
NUMBER: A22253
DESCRIPTION: Cleans up the QP and prepares it to receive a

new Query Step.
INPUTS:
OUTPUTS: 01, Free QP

02, QP Stopped
CONTROLS: Cl, Preempt QS

C2, QS Complete
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2225, Manage Active Query Steps
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff .

NAME: Create Compression Node
" TYPE: Activity

PROJECT: BCP
NUMBER: A22243
DESCRIPTION: Adds a compression node above a node that was

split between two or more QPs.
INPUTS: I1, Task Tree
OUTPUTS: 01, Task Tree
CONTROLS: Cl, Multiple QPs
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2224, Manage QP Assignment/Release

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

177

-

'.. ./ .-. ,-...

- * * a - *--* * *

NAME: Determine BCP Actions

TYPE: Activity
PROJECT: BCP
NUMBER: A2221
DESCRIPTION: Reads the message at the top of the queue and

takes the appropriate action.
INPUTS:
OUTPUTS: 01, BCP Cmd

02, Optimized Query (Query Tree)
03, Page Request

CONTROLS: Cl, Queue of Incoming BCP Msgs
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A222, Execute BCP DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Determine FE Actions
TYPE: Activity
PROJECT: BCP
NUMBER: A2121
DESCRIPTION: Reads the top message in the queue and calls

the correct module for that message type.
INPUTS:
OUTPUTS: 01, Raw Query, Data or Cmd

02, Data Dic
03, Response or Output

CONTROLS: Cl, Queue of Incoming FE Msgs
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A212, Execute FE DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

178

NAME: Determine Priority
TYPE: Activity 0
PROJECT: BCP
NUMBER: A22231
DESCRIPTION: Generates a priority rating for a query.
INPUTS:
OUTPUTS: 01, Priority
CONTROLS: Cl, Query Tree
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2223, Add to Task Tree

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Determine QS Requirements
TYPE: Activity
PROJECT: BCP
NUMBER: A22242
DESCRIPTION: Decides if a QP should be allocated to work on

this query step based on system status.
INPUTS: II, Query Status

12, File Status
13, Resource Status

OUTPUTS: 01, Query Step
02, Query Status
03, Multiple QPs

CONTROLS: C1, Leaf Count
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2224, Manage QP Assignment/Release S

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

179

S S* *.

. . --- -- -r -:.• ~ -L - r - .-. . : - - ..- . ' "r- - ~ ' - ' ' . . " -'" " '

NAME: Determine Query Completion Status
TYPE: Activity
PROJECT: BCP
NUMBER: A22262
DESCRIPTION: Decides if the query is completed. If so, it I

tells the frontend the location of any answer
relation.

INPUTS:
OUTPUTS: 01, Response
CONTROLS: Cl, Check Completion
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2226, Update Task Tree
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Determine Which Query Step to Preempt
TYPE: Activity
PROJECT: BCP
NUMBER: A22244
DESCRIPTION: Used to stop/abort a job. It causes any QPs

working on the terminated job to stop after
the completion of the current input page.

INPUTS: II, Query Status
OUTPUTS: 01, Preempt QS
CONTROLS: Cl, Preempt
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2224, Manage QP Assignment/Release

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

180

:!:::i?

/***1/

NAME: Execute BCP Cmd
TYPE: Activity
PROJECT: BCP
NUMBER: A2222
DESCRIPTION: Allows some external job control commands to

affect the system job scheduler.
INPUTS:
OUTPUTS: 01, Response

02, Preempt
03, Query Tree

CONTROLS: Cl, BCP Cmd
02, Trimmed Branch

MECHANISMS:
ALIASES:
PARENT ACTIVITY: A222, Execute BCP DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Execute BCP DBMS Functions
TYPE: Activity
PROJECT: BCP
NUMBER: A222
DESCRIPTION: Executes BCP commands, schedules query steps

to the QPs, and manages the paging algorithm
of each operation.

INPUTS:
OUTPUTS: 01, Queue of Outgoing BCP Msgs
CONTROLS: Cl, System Idle

C2, Queue of Incoming BCP Msgs
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A22, Provide BCP Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

181

N . '

NAME: Execute FE DBMS Functions
TYPE: Activity
PROJECT: BCP
NUMBER: A212
DESCRIPTION: Acts on incoming messages from the other

" processors, Its major functions are; to

receive and validate queries/commands from the
host, manage the Data Dictionary, pass the
queries down to the BCP, and send replies back
to the host.

INPUTS:
OUTPUTS: 01, Queue of Outgoing FE Msgs
CONTROLS: Cl, Queue of Incoming FE Msgs
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A21, Provide Frontend DBMS Fu, ctions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Execute Preliminary DBMS Functions
TYPE: Activity
PROJECT: BCP
NUMBER: A2122
DESCRIPTION: Receives raw input from the host system. It

checks the syntax and user access rights, and
logs the transactions. If it is a retrieval
query, it optimizes the query tree.

INPUTS: Ii, Data Dic
OUTPUTS: 01, Optimized Query, Legal Data,

Legal BCP Cmd and/or Storage Cmd
02, Legal DDL Cmd

CONTROLS: Cl, Raw Query, Data or Cmd
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A212, Execute FE DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

182

-fD-0151 892 BACKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR33
RELATIONAL DATABASE COMPUTER SYSTEM(U) AIR FORCE INST
OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.

UNCLASSIFIED D M PONTIFF DEC 84 AFIT/GCS/ENG/84D-22 F/0 9/2 N

liii! ~ *~ 1 2.8

III.g

inn~~ 118

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

NAME: Init BCP
TYPE: Activity
PROJECT: BCP
NUMBER: A14
DESCRIPTION: Causes the BCP to initialize system tables and

verify that at least one QP is available for
use. Sends a message to the FE after
initialization is complete.

INPUTS: I1, BCP Init Pkt
01, QP Status Pkt

OUTPUTS: 01, QP Init Pkt
II, BCP Status Pkt

CONTROLS: Cl, Init BCP
MECHANISMS:
ALIASES:
PARENT ACTIVITY: Al, Initialize Database System

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Init Frontend
TYPE: Activity
PROJECT: BCP
NUMBER: A12
DESCRIPTION: Causes the FE to initialize system tables and

verify that the BCP is available for use.
INPUTS: 01, BCP Status Pkt
OUTPUTS: 01, BCP Init Pkt

02, System Ready
CONTROLS: Cl, Init FE
MECHANISMS:
ALIASES:
PARENT ACTIVITY: Al, Initialize Database System

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

183

........................... m

"]' : ' ' i . ' - -. . -- .- ' . . . ". - - :.- ,- .- .- .- ." .. . r n -u--

II

NAME: Init QP
TYPE: Activity
PROJECT: BCP
NUMBER: A16
DESCRIPTION: Causes the QP to initialize any internal

fields or tables. Sends a message to the BCP
upon completion.

INPUTS: I1, QP Init Pkt
OUTPUTS: I1, QP Status Pkt
CONTROLS: Cl, Init QP
MECHANISMS:
ALIASES:
PARENT ACTIVITY: Al, Initialize Database System

* RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff t

/ ** /i!!i:
NAME: Initialize Database System h-
TYPE: Activity
PROJECT: BCP
NUMBER: Al
DESCRIPTION: Entails all necessary steps needed to bring

the DBMS up as a functioning unit (i.e.
supply power, load OS, initialize system r
tables, etc.).

INPUTS:
OUTPUTS: 01, System Ready
CONTROLS: Cl, Startup DBMS
MECHANISMS:
ALIASES:
PARENT ACTIVITY: AO, Provide Relational DBMS Support

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

* 184
.............................

• - ...* --. :-* %* o.% -. %

. NAME: Join to Task Tree
TYPE: Activity p
PROJECT: BCP
NUMBER: A22232
DESCRIPTION: Adds the incoming query tree into the task

tree as another branch. The query tree will
be joined at the root node based on its
priority.

INPUTS: II, Priority
12, Task Tree

OUTPUTS: 01, Task Tree
CONTROLS: Cl, Query Tree
MECHANISMS:
ALIASES: •
PARENT ACTIVITY: A2223, Add to Task Tree

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84 .
AUTHOR: Capt. Dale M. Pontiff

C NAME: Lockout New Queries
TYPE: Activity
PROJECT: BCP
NUMBER: A3
DESCRIPTION: Causes the frontend to stop listening for

queries.
INPUTS: 7-7
OUTPUTS: 01, FE Locked
CONTROLS: Cl, Shutdown Cmd
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A3, Shutdown System
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

185

-. e- .0*..

NAME: Log Transaction
TYPE: Activity 0
PROJECT: BCP -.
NUMBER: A21223
DESCRIPTION: Provides a transaction log of all queries and

commands (both for backup and security
purposes).

INPUTS: -
OUTPUTS:
CONTROLS: Cl, Legal Query, or Cmd
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2122, Execute Preliminary DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Manage Active Query Step
TYPE: Activity
PROJECT: BCP
NUMBER: A2225
DESCRIPTION: Directs the QPs and controls the system paging

of the MBU and MSU.
INPUTS: II, Query Status

12, Page Request
OUTPUTS: 01, Query Step or Paging Info

02, Storage Cmd
03, QS Complete
II, Query Status
Cl, Free QP
C2, QP Stopped

CONTROLS: C1, Preempt QS
C2, Query Step

MECHANISMS:
ALIASES:
PARENT ACTIVITY: A222, Execute BCP DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

186

S

L . .,. * • ,%* *** . . , . . . _ - , , , , . . , , . , . ,. . , , : :

67 - --

NAME: Manage DB Data Dic

TYPE: Activity
PROJECT: BCP
NUMBER: A2123
DESCRIPTION: Responsible for maintaining the database data

dictionary. If the input message was a valid
DDL command, it modifies the Data Dictionary
as needed.

INPUTS: II, Data Dic
OUTPUTS: 01, Data Dic, DDL Reply, or Storage Cmd
CONTROLS: Cl, Legal DDL Cmd
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A212, Execute FE DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84 p
AUTHOR: Capt. Dale M. Pontiff

NAME: Manage Paging
TYPE: Activity
PROJECT: BCP
NUMBER: A22252
DESCRIPTION: Handles the system paging algorithms.
INPUTS: II, Query Status
OUTPUTS: 01, Paging Info .

02, Query Status
03, Storage Cmd
04, QS Complete

CONTROLS: Cl, Preempt QS
C2, Page Request
C3, Load Init Pages

MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2225, Manage Active Query Steps
RELATED REQUIREMENT NUMBER:

VESION: 1.0 l
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

187• :..

77 7 -., .•

NAME: Manage QP Assignment/Release

TYPE: Activity
PROJECT: BCP
NUMBER: A2224
DESCRIPTION: Selects the next Query Step to be executed,

and determines which Query Steps must be
preempted when a job is stopped.

INPUTS: I1, Task Tree
12, File Status
13, Resource Status
03, Query Status

OUTPUTS: 01, Query Step
02, Preempt QS
03, Query Status
II, Task Tree
Cl, Trimmed Branch

CONTROLS: Cl, Preempt
01, Free QP
02, QP StoppedMECHANISMS:".-

ALIASES:
PARENT ACTIVITY: A222, Execute BCP DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

188~

NAME: Optimize Query
TYPE: Activity
PROJECT: BCP
NUMBER: A21224
DESCRIPTION: Arranges a complex query into a relatively

efficient query form (tree).
INPUTS: I1, Data Dic
OUTPUTS: 01, Optimized Query
CONTROLS: Cl, Legal Query
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2122, Execute Preliminary DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Provide BCP Functions
TYPE: Activity
PROJECT: BCP
NUMBER: A22
DESCRIPTION: Responsible for scheduling query tasks and

managing the system paging.
INPUTS:
OUTPUTS: 01, System Idle

02, Query Step or Paging Info Pkt
03, Storage Cmd Pkt
Cl, Response Pkt

CONTROLS: Cl, Optimized Query or BCP Cmd Pkt
02, Page Request Pkt

MECHANISMS: M1, Backend Control Processor
ALIASES:
PARENT ACTIVITY: A2, Provide DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

189

- "..... 7..-............... "---'--- -...

NAME: Provide DBMS Functions

TYPE: Activity .
PROJECT: BCP
NUMBER: A2
DESCRIPTION: Contains the necessary DBMS functions needed

to allow queries and commands to be levied
against the existing DB.

INPUTS: II, Query, Data, or Cmd Pkt S
OUTPUTS: 01, Output or Reply Pkt

02, System Idle
CONTROLS: Cl, System Ready
MECHANISMS:
ALIASES:
PARENT ACTIVITY: AO, Provide Relational DBMS Support

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

ILI

190

p

°. . .*..

"°

NAME: Provide Frontend DBMS Functions
TYPE: Activity
PROJECT: BCP
NUMBER: A21
DESCRIPTION: Responsible for communications between the

backend system and the outside world. It is
also responsible for most of the database
management functions not directly related to
relational operations against the database
(such as syntax checks, security checks,
transaction log, and query optimization).

INPUTS: II, Query, Data, or Cmd Pkt
04, Data Dic or Output Pkt

OUTPUTS: 01, Output or Reply Pkt 6

02, Optimized Query or BCP Cmd Pkt
03, Storage Cmd Pkt
04, Data or Data Dic Pkt

CONTROLS: Cl, System Ready
02, Response Pkt

MECHANISMS: Ml, Frontend
ALIASES:
PARENT ACTIVITY: A2, Provide DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0

DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

191

,. .-

.-.. .. % ...

NAME: Provide Mass Store Functions
TYPE: Activity
PROJECT: BCP
NUMBER: A23
DESCRIPTION: Responsible for file management. It provides

permanent storage of the existing database, . -

plus temporary storage of any intermediate
relations created during a query. 0

INPUTS: If, Data or Data Dic Pkt
02, DB Page Pkt

OUTPUTS: 01, Buffer Address
02, DB Page Pkt

CONTROLS: Cl, Storage Cmd Pkt
MECHANISMS: Ml, Mass Store Unit
ALIASES:
PARENT ACTIVITY: A2, Provide DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Provide Memory Buffer Functions
TYPE: Activity
PROJECT: BCP
NUMBER: A24
DESCRIPTION: Provides very fast scratch pad memory for the

QPs to manipulated data.
INPUTS: II, DB Page Pkt

01, DB Page Pkt
OUTPUTS: 01, DB Page Pkt

II, DB Page Pkt
CONTROLS: C1, Buffer Address
MECHANISMS: Ml, Memory Buffer Unit
ALIASES:
PARENT ACTIVITY: A2, Provide DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

192

.~~~~ -. " , ,

NAME: Provide QP DBMS Functions
TYPE: Activity
PROJECT: BCP
NUMBER: A25
DESCRIPTION: Provides the relational operations (select,

project, join, product, union, difference,
intersection), update operations (insert,
delete, modify), and miscellaneous operations
(min, max, count, sort, sum) that actual act
on the data within the DBMS.

INPUTS: I1, DB Page Pkt
OUTPUTS: 01, Buffer Address

I1, DB Page Pkt
Cl, Page Request Pkt

CONTROLS: Cl, Query Step or Paging Info Pkt
MECHANISMS: Ml, Query Processor
ALIASES:
PARENT ACTIVITY: A2, Provide DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

IL

NAME: Provide Relation DBMS Support
TYPE: Activity
PROJECT: BCP
NUMBER: A-O
DESCRIPTION: A relational database management system.
INPUTS: If, Query, Data, or Cmd Pkt
OUTPUTS: 01, Output or Reply Pkt
CONTROLS: Cl, Startup DBMS
MECHANISMS: Ml, Backend DBMS
ALIASES:
PARENT ACTIVITY:

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

193

. * *-. *.

NAME: Queue BCP Msgs
TYPE: Activity
PROJECT: BCP
NUMBER: A2227
DESCRIPTION: Places any outgoing communication messages in

a queue.
INPUTS:
OUTPUTS: 01, Queue of Outgoing BCP Msgs
CONTROLS: Cl, Storage Cmd

C2, Query Step or Paging Info
C3, Response

MECHANISMS:
ALIASES:
PARENT ACTIVITY: A222, Execute BCP DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Queue FE Msgs
TYPE: Activity
PROJECT: BCP
NUMBER: A2125
DESCRIPTION: Places any outgoing communication messages in

a queue.
INPUTS:
OUTPUTS: 01, Queue of Outgoing FE Msgs
CONTROLS: Cl, Output, Reply and/or Storage Cmd

C2, Data Dic, DDL Reply, or Storage Cmd
C3, Optimized Query, Legal Data,

Legal BCP Cmd, and/or Storage Cmd
~MECHANISMS:

ALIASES:
PARENT ACTIVITY: A212, Execute FE DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

194

NAME: Receive BCP Msgs
TYPE: Activity
PROJECT: BCP
NUMBER: A221
DESCRIPTION: Listens for incoming messages from the -.

frontend or the query processors.
INPUTS:
OUTPUTS: 01, Queue of Incoming BCP Msgs
CONTROLS: Cl, Optimized Query or BCP Cmd Pkt

C2, Page Request Pkt
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A22, Provide BCP Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff D

NAME: Receive FE Msgs
TYPE: Activity
PROJECT: BCP
NUMBER: A211
DESCRIPTION: Listens for incoming messages from the host

system or from other components of the Backend
System. The messages are converted into a
useable form for the FE.

INPUTS:
OUTPUTS: 01, Queue of Incoming FE Msgs
CONTROLS: Cl, Data Dic or Output Pkt

C2, Response Pkt
C3, Query, Data, or Cmd ?kt

MECHANISMS:
ALIASES: 5
PARENT ACTIVITY: A21, Provide Frontend DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

195

- -• --°-,- - , - , -. . - - - - - ---- - ,-
",.- .- ' .*:- " ->.->:--.. .. --. '-.', 2

NAME: Remove From Task Tree
TYPE: Activity P
PROJECT: BCP
NUMBER: A22261
DESCRIPTION: Removes the QS from the Task Tree.
INPUTS: II, Task Tree
OUTPUTS: 01, System Idle

02, Task Tree
03, Check Completion

CONTROLS: C1, QS Complete
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2226, Update Task Tree
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

S

NAME: Remove Old Intermediate Relationss
TYPE: Activity
PROJECT: BCP
NUMBER: A22263
DESCRIPTION: Causes the MSU to delete any old temporary

relation(s) used by this query step.
INPUTS:
OUTPUTS: 01, Storage Cmd
CONTROLS: Cl, QS Complete
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2226, Update Task Tree
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

196

. . . °

.. ".'

NAME: Save Permanent Data
TYPE: Activity 0
PROJECT: BCP
NUMBER: A32
DESCRIPTION: Causes the frontend to stop listening for

queries,
INPUTS:
OUTPUTS: 01, DB Saved
CONTROLS: Cl, System Idle

C2, FE Locked
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A3, Shutdown System
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Select Highest Available Leaf
TYPE: Activity

IL PROJECT: BCP -
NUMBER: A22241
DESCRIPTION: Chooses the leaf node with the highest

priority. If it is directed to reselect, it
ignores all previously selected leaves.

INPUTS: II, Task Tree
OUTPUTS: 01, Leaf Count
CONTROLS: Cl, Free QP
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2224, Manage QP Assignment/Release

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

197

• -° ~~~~..-. *.- °, ,. .,.,°- °. °. °. . . .- ° -.

NAME: Send BCP Msgs
TYPE: Activity
PROJECT: BCP
NUMBER: A223
DESCRIPTION: Converts the BCP's internal data structures

into a form that can be transferred to the
other processors. It sends responses to the
FE, storage commands to the MSU, and query
steps and paging information to the QPs.

INPUTS:
OUTPUTS: 01, Response Pkt

02, Storage Cmd Pkt
03, Query Step or Paging Info Pkt

CONTROLS: Cl, Queue of Outgoing BCP Msgs
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A22, Provide BCP Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Send FE Msgs
TYPE: Activity
PROJECT: BCP
NUMBER: A213
DESCRIPTION: Converts the internal system structures into a p

form that can be transferred to the other
processors.

INPUTS:
OUTPUTS: 01, Output or Reply Pkt

02, Optimized Query or BCP Cmd Pkt
03, Storage Cmd Pkt
04, Data or Data Dic Pkt

CONTROLS: Cl, Queue of Outgoing FE Msgs
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A21, Provide Frontend DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

19

198

°

*.' * ** *...-' p-'. .*. * - - .*' * . * * .,. *-. . - * . *.]. "* ,* ' .. ' .' ...

NAME: Send Shutdown Reply
TYPE: Activity
PROJECT: BCP
NUMBER: A33
DESCRIPTION: Informs the users that we are closed.
INPUTS:
OUTPUTS: 01, Shutdown Reply
CONTROLS: C1, DB Saved
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A3, Shutdown System
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

* ***/*?i)ii

* NAME: Shutdown System
* TYPE: Activity

PROJECT: BCP
NUMBER: A3
DESCRIPTION: Provides a safe, orderly method of terminating

the operations of the DBMS.
INPUTS: II, Shutdown Cmd
OUTPUTS: 01, Shutdown Reply
CONTROLS: C1, System Idle
MECHANISMS:
ALIASES:
PARENT ACTIVITY: AO, Provide Relational DBMS Support

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

199. , -

S

NAME: Startup BCP
TYPE: Activity 9
PROJECT: BCP
NUMBER: A13
DESCRIPTION: Causes the BCP to be booted with the BCP

Operating System.
INPUTS:
OUTPUTS: 01, Init BCP
CONTROLS: Cl, BCP Startup
MECHANISMS:
ALIASES:
PARENT ACTIVITY: Al, Initialize Database System

RELATED REQUIREMENT NUMBER: 0

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Startup Frontend
TYPE: Activity
PROJECT: BCP
NUMBER: All
DESCRIPTION: Causes the frontend to be booted with the FE

Operating Systems.
INPUTS:
OUTPUTS: 01, Init FE
CONTROLS: Cl, Frontend Startup
MECHANISMS:
ALIASES:
PARENT ACTIVITY: Al, Initialize Database System

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

200

S

, • • . . • o -. - . . - • , .

NAME: Startup QP
TYPE: Activity 5
PROJECT: BCP
NUMBER: A15
DESCRIPTION: Causes the QPs to be booted.
INPUTS:
OUTPUTS: 01, Init QP
CONTROLS: Cl, QP Startup
MECHANISMS:
ALIASES:
PARENT ACTIVITY: Al, Initialize Database System

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

NAME: Trim Branch
TYPE: Activity

S-PROJECT: BCP
NUMBER: A22245
DESCRIPTION: Removes the query job from the task tree.
INPUTS: Il, Task Tree
OUTPUTS: 01, Task Tree

02, Trimmed Branch
CONTROLS: Cl, QP Stopped
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2224, Manage QP Assignment/Release

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

2

I

........................' -

NAME: Update Task Tree
TYPE: Activity
PROJECT: BCP
NUMBER: A2226
DESCRIPTION: Checks for query completion, removes old

information, and deletes the query from the
task tree.

INPUTS: I1, Task Tree
OUTPUTS: 01, Storage Cmd

02, Response
03, System Idle
I1, Task Tree

CONTROLS: Cl, QS Complete
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A222, Execute BCP DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

I.NAME: Verify Access

TYPE: Activity
PROJECT: BCP
NUMBER: A21222 ".
DESCRIPTION: Provides data security checks. It verifies if

the user has access rights to the relation, [
field, or command.

INPUTS: I1, Data Dic
OUTPUTS: 01, Legal DDL Cmd

02, Legal Data, BCP Cmd and/or Storage Cmd
03, Legal Query or Cmd

CONTROLS: C1, Correct Query, Data, or Cmd
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2122, Execute Preliminary DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

202

If

Appendix D:

Sample Query in the Frontend

A sample query is shown here to provide a general

overview of the actions the FE must take to build a query

tree that includes all pertinent data from the Data Diction-

ary. It assumes all domains are made from basic data types

(i.e. integer, float, long integer, double precision float,

character string, bit string). It would be possible to also

provide max/min range values of each domain element, but this

would significantly increase the complexity of the software

within the FE and the QPs.

In the sample, the database contains the following

domain, and two base relations:

it, Domain Name Data Type

name char (varying)
address char (varying)
inches integer
lbs integer
age integer
SSAN integer
sex char (1)
title char (varying)
pay float
skill char (1)

Personnel Relation

Field Id Attribute Name Attribute Domain

I* Name name
2 Addr address
3 Height inches
4 Weight lbs
5 Age age
6 SSAN SSAN
7 Sex sex
8 Job-title title

203

-~~~~~ - ----

Job Relations

Field Id Attribute Name Attribute Domain -

I* Job title
2 Pay pay
3 Skilllevel skill

In this sample, the employer wishes to determine what -•-

relation (if any) there is between the employees sex, and pay

for everyone under 50 years of age.

select sex, age
from personnel, job
where personnel.job_title - job.job

and personnel.age < 50

This query is passed from the host to the FE. The FE

checks the syntax, and user access rights, (for the purpose

of the demonstration, it is will assumed that this is a valid

query). The FE then logs the transaction and optimizes the
P

query into a tree form. Figure D-1 shows the query as an

optimized query tree. The query step nodes are numbered in

the order they are discussed, not processed.

204

S

results

5 sexpay
s
e

4 job_title =job

P2 31 o i

2 sex, 3 job,pay
job-t itie tl

intermediate
job relation

P1
(job, pay, skill-level]

I age <50

personnel

(name, addr, height, weight
age, SSAN, sex, Job titlej

Figure D-1. Optimized Query Tree.

205

5

Since the data dictionary is only available to the FE,

it must build self contained query steps for the QPs to act

on. To do this, it passes pertinent data about each query

step down to the QP in thru the selection criterion,

attribute list, and modification list.

For node #1, (select personnel tuples where 'age' < 50),

the selection criterion is used to tell the QPs to compare

the fifth attribute field (age) with a constant value of 50.

The resulting relation (P1) has the same format as the input

relation (personnel).

Node #2 projects out only the attribute fields sex and

jobtitle (fields 7 and 8). This is done by setting the

attribute list in the query step to fields 7 and 8. The

resulting relation (P2) consist of only two attribute tuples;

k(1, sex) and (2, jobtitle)j. The ordering is determine by

the attribute list. If the attribute list were set to fields

8 and 7, then the resulting relations would contain tuples

with J(l, job title), (2, sex)J.

Since the Select Node (node #1) uses only the selection

criterion, and the Project Node (node #2) uses only the

attribute list, it is feasible to combine these operation

into a single Select/Project query step. This would provide

significant savings in terms of paging, at the cost of

software complexity within the backend system.

Node #3 is another project node. It tells the QPs to

keep only the first two attribute fields of the relation p

206
, S

........ ~~

'job.' Thus, the output relation (JI) contains tuples with

((1, job), (2, pay)).

The next node (#4) is a join operation. It uses the

selection criterion to tell the QPs to join relation 'P2'

with relation 'Jl' where P2.job title - Jl.job. The

selection criterion is set to compare field 2 with field 1

and concatenate the two relations if they are equal. In a

join operation, the first field always refers to the first

input relation, while the second field refers to the second

input relation. Thus we are comparing the second field in

relation P2 (P2.jobtitle) with the first field in relation

Jl (Jl.job). The resulting relation (PJ) consist of tuples

with the following attribute set:

J(I, sex), (2, jobtitle), (3, job), (4, pay)

Note that the second relations is concatenated behind the

first relation.

The final node (#5) removes the unwanted field in

relation PJ giving the final result of ((l, sex), (2, pay)'.

Again, since the join operation does not use the attribute

list portion of the query step, it is possible to create a S

combined Join/Project node at the cost of software

complexity.

The information passed down to the QPs thru the query

steps consists only of the field id (number), not the field

name. So, the FE must know what the tuples of each

intermediate relation will look like.

207

Appendix E:

Summary Paper for a S

Backend Control Processor for a Multi-Processor

Relational Database Computer System

p

Introduction

Work was begun on the Multi-Processor Backend Relational

Database Management Computer System in 1981 by Robert Fonden.

His purpose was to design a database machine to relieve the

main frame computer of the DBMS tasks. This would free up

the resources of the main frame for other tasks while sup-

plying faster, cheaper responses to user database queries.

The initial work being done is of an investigative

nature. Methods are being tested to determine where major

advances to the system can be obtained, but the final system

configuration is not fixed.

The current design configuration consists of a frontend p

processor (FE), a backend control processor (BCP), several

query processors (QPs), a fast multi-port memory unit (MBU),

and a permanent storage device (MSU) (See Figure E-1).

Overview

The FE is connected to a host system, network, or CRT
S

and receives any incoming user queries or commands. It

performs syntax and security checks against the input by

referencing the database data dictionary (which is stored on
S

the MSU). If the input was a retrieval query, the FE

208

-

Host, .
Network, 8.
or CRT J

I --MassFrontend Stora

Backend Memory
Control Buffer
Processor Unit

Query Query . Query
Processor Processor Processor

Figure K-i. Physical Design of Backend System

optimizes it, and stores it as a query tree (See Figure E-2).

Any commands that modify the data dictionary are executed in S

the FE, all other commands and queries are passed down to the

BCP. Upon the completion of a query/command by the BCP, the

FE receives a response message. For update queries and 9

commands, the response contains a reply about the sucess or

failure of the query/command. For retrieval queries, the

response contains the name of the output relation on the MSU. -

The FE then transfers any reply or output relation to

209
• 'o .

results ~c

5 sex~pay
s

Pi e

4 job title -job

P2 ilo i

2 sex, 3 job~pay
job-title

intermediate
job relation

job, pay, skill level

1 age < 50

personnel

name, addr, height, weight
age, SSAN, sex, job title

Figure 1-2 Optimized Query Tree.

210

e-

.-
1.

the host system and removes the output relation (if any).

The BCP receives update queries, optimized retrieval .-

queries, and miscellaneous job control commands (stop/restart -.

/abort query, change priority, status, etc.). The BCP's job

is to control the assignment of the QPs to specific query

steps, manage the system paging algorithms, and control the

creation/deletion of temporary relations. It maintains a

list of all query steps, the status of each QP and the MBU,

and the file size and name of each temporary and base

relation it must access.

It is able to direct the MSU to read/write data pages

from any file into and out of the MBU, but does not need to

exchange any data with the MBU itself (except control p

messages).

The QPs perform the actual update/retrieval step against

the database. Each QP receives a single query step from the

BCP along with the necessary paging information to allow them

to access the proper page in the MBU (for both input rela-

tions and output relations). As a QP completes a page in the S

MBU, it informs the BCP and begins work on the next page of

the relation. The BCP is able to free the page just com-

pleted by the QP and direct the MSU to read/write to that .

page in the MBU. By allowing the QPs to queue up paging

information messages, a buffering scheme is achieved. This

allows the BCP to send several input/output pages to the QP -

211

.-

and provide smooth, continuous processing by the QPs.

The MSU provides a permanent storage device for the

backend system. It stores the database data dictionary and

all base relations. It also provides storage space for any

temporary files that must be paged out of the MBU.

The MBU provides a fast common scratch pad for the QPs

to manipulate the data. It is managed indirectly by the BCP

thru the MSU and QPs. The BCP controls which pages the MSU

and QPs access and in what fashion (read/write).

The BCP (proiected)

The BCP must coordinate the actions of the backend

machine. It is connected to the QPs in a master/slave rela-

tionship and directs their actions by passing them query -

steps and paging information. It must be able to control the

MSU to get the data pages down to the QPs (thru the MBU). It

indirectly controls the MBU by controlling the paging of the

MSU and QPs into/out of the MBU. Finally, it must coordinate

the recombining of several output relations generated by

multiple QPs acting on the same query step.

Upon receiving a query tree from the FE, it determines

the priority of the query and adds it to the active query

tree (this is a collection of all queries within the back-

end). Any query step which has some data available to from

-" all of its input files is eligible to be assigned to a QP.

Any time the active query tree is not empty, and there is at

• .. least one idle QP, the BCP examines the active query tree to

212

determine which eligible node should be assigned to the QP.

This allows the BCP to dynamically decide how many QPs to

assign to any eligible query step based on the current work-

load, and status of other QPs.

Once the QP is assigned to the query step, the BCP must

determine how many pages of storage in the MBU should be

dedicated to the query step/query processor pair. It

allocates the storage based on the query step operation

(select, project, join, etc.), the amount of free stroage in

the MBU, and the status of the other QPs in the system. The

storage allocation algorithm is essentially a virtual memory

manager which guarantees each active QP a minimum number of

memory pages based on the query step operation. -

As the QPs generate output relations, the BCP must

decide whether or not to page the data out to the MSU. If

the relations are small, or the output data is being pipe-

lined into another QP as input, the BCP will attempt to keep

the data in memory. Otherwise, the data must be moved to the

MSU to make room for input/output data needed by other QPs.

The BCP must be able to create and delete temporary files on

the MSU and manage these files (so it knows which file con-

tains what output).

If a query step is large enough to warrent the action of

two or more query processors, the output must be combined in

a manner which can remove duplicate tuples (if required).

This is done by breaking the output file(s) into sizes that

213

wIN." -- . --..

will fit into the memory allotted to a QP and performing an

in-place sort (i.e. heapsort, or quicksort) on the data.

After two portions of the file are sorted, a merge sort

algorithm is used to combine them into a single larger file

(removing duplicate tuples during the merge). By continuing

in this fashion, all duplicate tuples can be eliminated, and

the file combined into a single output relation.

Current Implementation of the BCP

The previous section discussed how the BCP should event-

ually operate, although what is currently implemented falls

short in some areas.

The BCP stores incoming queries in a doubly linked

- circular priority list. Each query is in a modified tree

form (update queries contain only a single query step; thus

are a trivial tree), with leaf pointers connecting the bottom

most leaves of the query tree (See Figure E-3). Only leaf

nodes are eligible for assignment to the QPs; thus pipelining

is not currently supported.

The QP assignment algorithm does dynamically assign the

QPs, but uses a very simple approach. First, it assigns one

QP to each eligible query step (by order of priority). If

there are more QPs than eligible query steps, it takes the

highest priority leaf node and continues to assign the extra

QPs to it until the ratio of pages in the relations to QPs is

less than a constant value (currently 25). If there are

214

. '.. -. *~ \
.,...

- . °. " -.-

S

To To
PreviousNext

Branh Ba-n c-

bakQuery forward

q~oo firstleaf
Query
No de \S

Query

Node Query

Quer Query .l Query",

oe Node -- Node

Query QueParent/Child Ptr

Node N'ode -- - - - -

Next/Prev Leaf Ptr

Figure E-3. Query Tree (Branch). L5

S

still idle QPs, the process begins again on the next highest

leaf. This continues until all the QPs are assigned, or

every eligible query step has been checked. Thus, there may S

be idle QPs because the cost of splitting a node below a

certain point is uneconomical (i.e. it takes more time to

recombine the output relations).

Because AFIT does not currently have a multi-port memory

215

2.
...... ...~~~~~~~........... ,...... .., *.. -..............- ,-,... ,. . ..- ,,..,, ,

7. 7 77

(or a suitable substite) for experimental projects, the MBU

was eliminated (temporarily) from the implemented version of

the backend system. Instead, each QP must reserve memory

storage within their own RAM. The storage allocation al-

gorithm on the BCP is limited by this restriction, and cannot

dynamically allocate more storage space for any single query

step than is available in the QP. This also prevents the BCP

from giving one QP more storage than another on a dynamic

basis, and eliminates the ability to pipeline data without

transferring the data between processors.

The BCP does have a sophisticated file management capa-

bility. It maintains an output file for each query step that

a QP acts on, and removes any temporary file as soon as

possible. Unfortunately, time did not permit the implementa-

tion of the sort or merge paging algorithm, so the system is

not able to eliminate duplicate tuples at this time.

Conclusion

The development of the Backend Relational DBMS Computer

System is still in its infancy. Several areas have been

advanced, and some solutions proposed. The ability to

dynamically allocate QPs and memory space, and the general

system paging algorithm are implemented, but a tremendous

amount of work remains to be completed on the BCP and the

backend system.

216

, o o,~~~~~~~~~~~~~~~~~....,........,o..........................--..............-.... ':

Biblioaraphy

1. Advanced Digital Corporation. Technical Manual for Super

Quad. Garden Grove, California: Advanced Digital
Corporation.

2. Advanced Digital Corporation. Technical Manual for Super
Slave. Garden Grove, California: Advanced Digital
Corporation.

3. Boral, Haran and others. "Implemenatation of the
Database Machine DIRECT," IEEE Transactions on Software
Engineering, Vol SE 8, No 6, November 1982.

4. Date, C. J. An Introduction to Database Systems (Third
Edition). Reading. Massachusetts: Addison-Wesley
Publishing Company, 1982.

5. DeWitt, David J. "DIRECT - A Multiprocessor Organization
for Supporting Relational Database Management Systems,"
IEEE Transactions on Computers. Vol C-28, June 1979.

6. Fonden, Robert W. Design and Implementation of a Backend
Multiple-Processor Relational Data Base Computer System,
Master Thesis, Air Force Institute of Technology (AU),
Wright-Patterson AFB, Ohio, 1981.

7. Hartrum, Thomas. Air Force Institute of Technology,
Department of Electrical Engineering. Memorandum on 1984
AFIT Thesis Research in Database Management System
Design. Wright-Patterson AFB, Ohio, May 1984. o

8. Hsiao, David K. and M. Jaishankar Menon. Design and
Analysis of a Multi-Backend Database System for
Performance Improvement. Functionality Expansion and
Capacity Growth (Part I), Contract N00014-75-C-0573
Office of Naval Research. Ohio State University,
Columbus, Ohio, July 1981.

9. Hunter, Bruce H. Understanding C. Berkeley, California:
SYBEX Incorporation. 1984.

10. Kerr, Douglas S. and others. The Implementation of a
Multi-Backend Database System (MDBS): Part I - Software
Engineering Strategies and Efforts Toward a Prototype
MDBS, Contract N0014-75-C-0573, Office of Naval
Research. Ohio State University, Columbus, Ohio, January
1982.

217

4r r -. d

11. Peters, Lawrence J. Software Design Methods and
Techniques. New York: Yourdon Press. 1981.

12. Rogers, William R. Development of a Query Processor for I
a Back-end Multiprocessor Relational Database Computer, -

Masters Thesis, Air Force Institute of Technology (AU),
Wright-Patterson AFB, Ohio, 1981.

13. Roth, Mark A. The Design and Implementation of a
Pedagogical Relational Database System, Masters Thesis,
Air Force Institute of Technology (AU), Wright-Patterson
AFB, Ohio, 1979.

14. Ullman, Jeffrey D. Principles of Database Systems
(Second Edition). Rockville, Maryland: Computer
Science Press, 1982.

15. Zolman, Lear. BDS C Compiler vl.5 User's Guide.
Manual. Brighton, Massachusetts.

218

_

p

VITA

Captain Dale M. Pontiff was born on 14 August 1957 at

Westover AFB, Massachusetts. He graduated fron high school

in Lafayette, Louisiana, in 1975 and attended the University

of Southwestern Louisiana from which he received the degree

of Bachelor of Science in Computer Science in May 1979. Upon

graduation, he received a commission in the USAF through the

ROTC program. He was assigned to the Data Services Center,

Pentagon, Washington DC., were he was a system analyist on

the Honeywell Multics computer. Since to the School of

Enginerring, Air Force Institue of Technology, in May 1983.

Permanent address: 301 Woodvale Ave.
Lafayette, LA 70503

219 I~- 2 -

p UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

F REPORT DOCUMENTATION PAGE

'a1. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED _______________________

A 20. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. OECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/84rD-22 ____________________

6& NAME OF PERFORMI1NG ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering (f apoticable)
FAFIT/ENG _______________________

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

r Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Go. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Rome Air Development Center RADC/CO

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.______

PROGRAM PROJECT TASK WORK UNITGriffiss AFB, New York 13441 ELE ME NT NO. NO. NO. NO.

11. TITLE tinciude Security Classification)

See Box 19
12. PERSONAL AUTHOR(S)j Dale M. Pontiff, Capt. USAF
13& TYPE OF REPORT 13b. TIME COVERED 014. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

Thesis FROM _____TO 84____ 227
16. SUPPLEMENTARY NOTATION

j 17. COSATI CODIES YBr. SUBJECT TERMS eContnnue on reverse if necesary and identify by btock number)

FIELD GROUP SUB. GR. Database, Database Machine, Data Management, Backend Process
09 02 ~Management Info System, Multiprocessorse'.>IA /

19I. ABSTRACT Woantinue on reverse if necessary and identify by btock number)

Title: BACKEND CONTROL PROCESSOR FOR A MULTIPROCESSOR

*RELATIONAL DATABASE COMPUTER SYSTEM JA'N AIR 190-17.

1_1Ujn ICr ,T~ * p!~I 0 y1pA

0 Thesis Advisor: Dr. Thomas C. Hartrum AA ii

* .20. OISTRIBUTION/AVAILABILiTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLMITED
2

1 SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFIED

j221L NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER I22c. OFFICE SYMBOL
(Incltude Area Code,)

p Tn~y~o ~513-255-3576 APTT/rir

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PA.E

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

This-paper discusses the design and development of a control processo. for
a multi-processor relational database machine. The objective was to create the software
needed to allow a micro-processor to receive relational query trees from a frontend
processor, and to distributg the work load between several other slave processors,

The requirement analysis of the controller determined that the controller must
provide three major functions within the backend database machine. It must assign
slave processors to query operations, control the system paging, and manage file
creation and deletion. Next, the thesis proves that each query operation canbe
sucessfully split across several slave processors and the results be recombined to

provide the same response as a query executed on a simgle processor. Finally, the
thesis gives a detailed description of the software algorithms used by the BCP to
manage the backend system. 0 , / ?,gr lpy A /-'. -.

L-..

UJNCLASSIFIED

%

.. ___

FILMED

4-85

DTIC

